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Abstract

English verb-noun combinations (VNCs) consist of a verb with a noun in its direct

object position, and can be used as idioms or as literal combinations (e.g., hit the

road). As VNCs are commonly used in language and their meaning is often not pre-

dictable, they are an essential topic of research for NLP. In this study, we propose

a supervised approach to distinguish idiomatic and literal usages of VNCs in a text

based on contextualized representations, specifically BERT and RoBERTa. We show

that this model using contextualized embeddings outperforms previous approaches,

including the case that the model is tested on instances of VNC types that were not

observed during training. We further consider the incorporation of linguistic knowl-

edge of lexico-syntactic fixedness of VNCs into our model. Our findings indicate that

contextualized embeddings capture this information.
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Chapter 1

Introduction

Natural language processing (NLP) is a branch of artificial intelligence that deals

with textual data and allows machines to read, understand and analyze natural lan-

guage data. The root of natural language processing is in the 1950s. An article

titled “Computing Machinery and Intelligence” [68] proposed the Turing test as a

measure of intelligence, a task requiring automated analysis and generation of natu-

ral language, but was not expressed as a problem separate from artificial intelligence

at the time. In this test, a human evaluator determines whether a machine can pro-

duce human-like responses through communications between a device and a human

partner. Suppose the evaluator, who would be aware that one of the two interac-

tion partners is a computer, is not able to distinguish which responses are from the

artificial partner. In that case, the computer is said to pass the Turing test. The

communications are limited to a text-only channel such as a computer keyboard and

screen.

The nature of human language makes NLP difficult due to the ambiguity of human

language, and it is not easy for computers to understand natural languages. To

fully comprehend human language, one must both understand the words and the

connections between them in order to convey the intended meaning. In the past
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years, computers can better learn models to understand and extract meaning from

written and spoken language with the help of neural networks for machine learning,

and these approaches are used in many NLP tasks.

There are a wide range of NLP problems. For example, in the part-of-speech (POS)

tagging task, a system tries to determine the POS for each token in a sentence. A

category of words with similar grammatical properties is a part-of-speech. Noun,

verb, adjective, adverb, pronoun, preposition are common parts-of-speech. In the

sentence I like to watch TV the expected output could be the sequence pronoun,

verb, preposition, verb, noun. In named entity recognition (NER) the system tries to

find the proper names such as people or places and the type of each such name (e.g.

person, location, organization) given an input sentence. Machine translation (MT)

[29] is another widely studied and difficult task in which a system is developed in

order to translate a given sentence or document into a different language.

Multiword expressions (MWEs) are lexicalized combinations of multiple words, which

display some form of idiomaticity [6]. MWEs include a wide variety of phenomena

such as fixed expressions (e.g., by and large), light verb constructions (e.g., take a

walk), and verb-noun combinations (e.g., see stars) and they are frequently used in

many languages in both text and speech. MWEs have varying degrees of composi-

tionality, i.e., the degree to which each component word contributes to the seman-

tics of the expression. Multiword expressions have received a lot of attention from

researchers [58]. However, there are relatively few resources, such as manually anno-

tated corpora in various languages for multiword expressions, which makes working

with them a “pain in the neck” for NLP [58]. To build a robust natural language

processing technology, handling MWEs is very important [58] because knowledge of

MWEs is essential in many downstream applications such as machine translation

and information retrieval.

In machine translation, the multiword expression problem is that the system should
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decide whether to translate an MWE word by word or consider it as a single unit.

The story is the same for the information retrieval task. When a user is querying

hot dog in a web search engine like Google, it is unusual to think that the user is

actually looking for a dog that is hot. When the system sees an MWE like hot dog

as a single unit, the system will give the user better results [1]. Addressing the

challenges related to multiword expressions is therefore essential.

We now focus on verb–noun combinations (VNCs), which consist of a verb with a

noun in its direct object position. VNCs are a common kind of MWE in English and

also cross-lingually [25]. VNCs exhibit semantic idiosyncrasy, i.e., the meanings of

VNCs are, to varying degrees, not transparent from the meanings of their component

words. In the following example, hit the road has an idiomatic meaning corresponding

roughly to ‘start a journey’:

1. The marchers had hit the road before 0500 hours and by midday they were

limping back having achieved success on day one.

Furthermore, VNCs are often ambiguous with literal combinations whose meanings

are transparent. In the following sentence, for example, hit the road is a literal

combination, i.e., not an MWE, and the idiomatic meaning of ‘start a journey’ that

this expression can have is not present:

2. Two climbers dislodged another huge block which hit the road within 18 inches

of one of the estate’s senior guides.1

The idiomatic interpretations of VNCs are typically lexico-syntactically fixed. For

example, the idiomatic interpretation of hit the road generally is not accessible if the

determiner is indefinite (e.g., hit a road), the noun is plural (e.g., hit the roads), or

the voice is passive (e.g., the road was hit); in such cases typically only the literal

interpretation is available.

1These example sentences are taken, with slight editing, from the VNC-Tokens dataset [20].
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Several studies have considered automatic methods for distinguishing literal and id-

iomatic usages of VNCs. [27] apply k-means clustering to representations of VNC

usages based on word embeddings [48], and then label each cluster as idiomatic or lit-

eral based on whether the majority of its instances are in a canonical or non-canonical

form, respectively. [61] propose a supervised approach to predicting the token-level

idiomaticity of VNCs based on training an SVM on skip-thoughts [35] representations

of sentences containing VNCs. [33] achieve better results using a more straightfor-

ward sentence representation based on the average of word embeddings. Moreover,

[33] show that adding a single binary feature to the sentence representation indicat-

ing whether the VNC occurs in a canonical form gives substantial improvements.

[37] propose a supervised approach to classifying instances of potentially-idiomatic

expressions, including VNCs, as idiomatic or literal, using representations of these

instances based on contextualized embeddings.

In the current study, we propose a supervised approach using contextualized em-

beddings, specifically BERT [23] and RoBERTa [45], to distinguish idiomatic and

literal usages of VNCs. We evaluate our work using accuracy in order to be able to

compare our results to previous studies and baselines.

In this study, the main research question is Does an approach to identifying VNC

idioms that incorporates contextualized embeddings outperform prior approaches that

do not use contextualized embeddings? The results of our experiments in Chapter 5

demonstrate that the proposed supervised approach using contextualized embeddings

is able to outperform the previous best approach of [33]. We utilize pre-trained BERT

[23] and RoBERTa [45] language representation models and fine-tune them on our

dataset for this supervised classification task. We also experiment with the effect of

incorporating a feature indicating whether a given VNC instance is in a canonical

form. Here we find that our approach using contextualized embeddings outperforms

prior approaches that do not use contextualized embeddings. The second research
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question that we answer in this study is Is an approach to identifying VNC idioms

that incorporates contextualized embeddings able to generalize to unseen expressions?

The results show that our proposed method can generalize to expressions that are

unseen during the training stage. In order to examine this, we leave each VNC idiom

and its corresponding sentences out of the training dataset, let the system label the

instances of the VNC that is unseen during the training and repeat this for each

VNC type. We also incorporate the canonical form feature in these experiments

to see whether adding this knowledge improves the system. This is an interesting

experimental setup as we may not have enough annotated training data for every

VNC type. Our results indicate that the model has learned information about the

idiomaticity of VNCs in general, and not just for specific expressions that are present

in the training data. In other words our model is able to generalize to VNCs that

are unseen during training.

The contribution of this thesis can be clearly listed as follows:

1. Proposing an approach to identifying VNC idioms as idiomatic or literal that

incorporates pre-trained contextualized embeddings, and outperforms the pre-

vious state-of-the-art for this task.

2. Finding that contextualized embeddings are able to capture the linguistic

knowledge encoded in the canonical form feature.

3. Proposing an approach to identifying VNC idioms that is able to generalize to

unseen expressions.

The remainder of this thesis is structured as follows. Chapter 2 will discuss related

works, beginning with different types of embeddings, from count-based embeddings

to contextualized embeddings. We also review the background and related work

in multiword expressions and specifically in VNCs. In Chapter 3, we present our

proposed supervised classification model, which utilizes contextualized embeddings.
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Chapter 4 describes the dataset we used in this study along with the vector repre-

sentation models we use to train and evaluate our models. Chapter 5 presents the

results of our experiments. Finally, in Chapter 6, we summarise the contributions of

this thesis, and we briefly conclude our work and discuss potential future research

directions.
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Chapter 2

Related Work

This chapter summarizes previous research on word vector representations, including

traditional count-based embeddings, static word embeddings, and contextualized

word embeddings. After that, we review previous research on multiword expressions.

2.1 Embeddings

In order to find similarities, relatedness, and other relationships between words, we

should be able to represent words in a way to apply mathematical operations to them.

A common way to represent words is therefore as vectors, referred to as embeddings.

2.1.1 Count-based word embeddings

A simple approach to build vector representations of words is a count-based model

based on a co-occurrence matrix. For a vocabulary V of size |V |, a co-occurrence

matrix X of dimension |V | × |V | is created by looking over a corpus and populating

the entries of the matrix in such a way that Xjk contains the number of occurrences of

each word j in a specified window-size around the word k as seen in the given corpus.

There is a downside to the use of co-occurrence counts as measures of association.

Some word pairs may co-occur with high frequency solely due to the fact that one
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of the words in the pair is frequent itself. If two words co-occur with words that are

similar, using co-occurrence matrices does not necessarily give us any information

about the similarity of these words. Also, such a matrix is highly sparse as most

indices are zero. Figure 2.1 shows an example of the co-occurrence matrix with a

window of size 3 for the corpus including the sentences “I enjoy flying.”, “I like

NLP.”, and “I like deep learning”.

Figure 2.1: Co-occurrence matrix with a window of size 3 [14].

2.1.2 Standard word-embeddings

To address the sparsity and other limitations discussed, word embeddings based on

artificial neural networks were proposed [36, 53] and they achieved state-of-the-art

or competitive results in many NLP tasks such as sentence completion [47]. By

this language modelling and feature learning technique, we can represent a word in

a context with dense vector representations [57]. We can use the embeddings as

pre-trained features for representing a word [48, 53], context [47], sentence [35], or

document [40] in many NLP tasks such as document classification [35], information

retrieval [72], and semantic role labelling [17]. In these approaches, a word is assigned

to a low-dimensional fixed size dense vector, which is learned by the distribution of
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a word in a text. These representations can successfully capture the semantic and

syntactic roles of a word in the text. Using these embeddings, words that are used

in similar contexts are located close to each other in vector space. As we can see

Figure 2.2: Example of 7-dimensional word embeddings, and their visualization in
2-dimensional space [57].

in Figure 2.2, the embeddings of the words puppy and dog are located close to each

other, while the embedding of houses is far from them. Also, the word embeddings

encode some relationships between words as well. For example:

v(king)− v(man) + v(woman) ≈ v(queen)

The vector for king minus the vector for man plus the vector for woman will result in

a vector that is close to the vector for queen. This shows that the model has learned

to represent words with respect to a dimension that can capture gender and another

dimension that can capture royalty.

At the word type level, the approach proposed by [48], referred to as word2vec, plays

an important role in learning embeddings with neural networks that provide inter-
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esting semantic relationships between words. Since this approach does not require

matrix multiplication, the training of the word2vec model is very efficient [49]. Con-

tinuous bag-of-words (CBOW) and skip-gram are two different variations of neural

network models we can use to learn word embeddings with word2vec. They use a

shallow neural network to learn the word vectors. The purpose of the CBOW model

is to predict the word representation of the target word w(t) with respect to the

words surrounding it in a fixed-size window (Fig 2.3). The CBOW model exploits a

feedforward neural network language model in its architecture [8]. This prediction is,

in fact, based on the sum of the vector representations of the words appearing in the

window. The input to this model is the context words in the fixed-size symmetric

context window (w(t − i), w(t − i + 1), ..., w(t − 1), w(t + 1), ..., w(t + i)) encoded

as a combination of one-hot vector representations of the context words of a target

word, when i is the size of the window. The projection layer maps the input to lower

dimensionality. After that, the distribution of all vocabulary words is learned and

stored in a weight matrix. The purpose of the model is to maximize the probability

of a target word in a given context with the help of the feedforward neural network.

It tries to minimize the following loss function to learn the word representations,

where w(t) is the target word:

E = − log(p(w(t)|w(t− i), w(t− i + 1), ..., w(t− 1), w(t + 1), ..., w(t + i))

In contrast, the Skip-gram model (Figure 2.4) takes a one-hot vector of the target

word w(t) as an input and tries to predict its context words (w(t − i), w(t − i +

1), ..., w(t− 1), w(t + 1), ..., w(t + i)).

The document may include some information that the local context around the target

word does not capture, and word2vec does not encode this in the word representations

since word2vec only learns local context information. Global Vectors (GloVe), which

was proposed by [53], considers all the global information in the training corpus in

10



Figure 2.3: The CBOW model architecture proposed by [48].

Figure 2.4: The Skip-gram model architecture proposed by [48].
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the form of co-occurrences of words and their distance from the target word. For

this purpose, we use a V ∗ V co-occurrence matrix X, in which V is the size of

the vocabulary, and the element Xij shows the number of times words in index i

accompanied word in index j. When two words get used together often, word2vec

does not know whether this is because one of the words is a common word or there

is a strong linkage between them. In order to find whether two words such as i and j

are similar to each other or not, using a co-occurrence matrix, we have to divide the

number of times they have been seen with each other, Xij, by the number of times

the word i appeared in the corpus.

In recent years some complex approaches with the aim of improving word embeddings

have been proposed including the work done by [41], which utilized dependency

parse-trees and the work done by [73] which leveraged subword units.

To overcome this limitation, fastText [10] uses a bag of character n-grams (subwords)

and extends the word2vec skip-gram model. In fastText, to obtain word embeddings

of a word, we compute the average of the vectors associated with each of the character

n-grams. For example to compute, the vector representation of the word model with

the smallest n-gram = 3 and the largest n-gram = 6 we have to average the vectors

for the n-grams “<mo′′, “mod′′, “mode′′, “model′′, “model>′′, “ode′′, “odel′′, “odel>′′

, “del′′, “del >′′, “el >′′ where “< ′′ and “> ′′ are special beginning and end of word

markers. Representing each word as a bag of n-grams allowed the fastText model to

better handle words that did not appear in the training corpus.

A further limitation of both word2vec and GloVe embedding models is that they

assign one embedding for each word regardless of its sense. For example, we will

have the same embedding for the word watch in the sentences I lost my watch and

Let’s watch TV. One limitation of both word2vec and GloVe is that they poorly

estimate the word embeddings of rarely used words.

12



2.1.3 Contextualized word embeddings

The embedding methods we discussed until now assign each word a single global

representation. Word2vec embeddings are learned based on the contexts in which

words occur in. Context can have a significant impact on the word’s meaning. In

contrast contextualized embedding such as ELMO [47] and BERT [23] assign each

token a context-dependent word representation. In these methods, each token is

associated with a representation that is a function of an entire input sequence. These

representations capture the semantic and syntactic properties of words in a specific

context.

Mostly, contextualized word embeddings are pre-trained like a general-purpose lan-

guage model on a large-scale unannotated corpus. These pre-trained embeddings can

be used later as a representation layer in downstream NLP tasks. We can fine-tune

these pre-trained embeddings to the task or use them as fixed embeddings.

ELMO (Embeddings from Language MOdels), proposed by [54] is one of the first

contextualized embedding approaches that improved the results of many downstream

NLP tasks. A two-layer bi-directional long short-term memory (LSTM) is associated

with a language model (LM) objective and is trained on a large number of sentences

of a huge corpus of text both forward, and backward [54]. The two language mod-

els that ELMO uses read each sentence in opposite directions. The system learns

a linear combination of the layers stacked on top of each word, and we can derive

the deep representations for each word, built from all internal layers of the bidirec-

tional language model. ELMO can capture various types of syntactic and semantic

information of a word in the context that it appears. ELMO embeddings can be

concatenated to global word representations such as word2vec, and they can be used

as an input to downstream NLP tasks without changing the architecture of their

models. ELMO improves the state of the results of several NLP benchmarks includ-

ing sentiment analysis [65], question answering [56] and named entity recognition

13



[67].

Figure 2.5: The model architecture of a simple encoder-decoder [16].

To focus on more recent contextualized word embeddings methods, we need to briefly

explain the underlying principles of a new neural network architecture, transformers

[70], and the concept of attention [3, 46]. In attention models, we mostly deal with

encoders and decoders. The job of the encoder is to take the input sentence and

represent the information of its context in a vector of continuous hidden values.

After getting the entire input sequence, the encoder carries the context over to the

decoder, and the decoder attempts to produce the output sequence one item at a

time. You can see a simple visualization of the encoder-decoder model in Figure 2.5 in

which x1, x2, xT are the inputs, c is the summary of the input activations, and y1, y2,

yT are the outputs. The performance of the encoder-decoder architecture degrades

in longer sentences [15]. Therefore, to better manage the context in long sentences

a solution called “attention” has been proposed [3, 46] that helps the decoder to

concentrate on the relevant parts of the input sequence by gathering information of

each hidden unit separately. In the earlier encoder-decoder models referred to as

sequence to sequence models, only the last hidden state of the encoding step (single

14



vector c in Figure 2.5) was sent to the decoder. However, in attention models, all the

hidden states of the inputs (h) pass to the decoder. All the hidden states then will

be scored based on their association with a certain word in the input sentence and

will be multiplied by their softmaxed scores. The sum of the result of each hidden

state will form a context vector for the decoder at each time step (Fig 2.6). At each

time step in the decoder, the result of the concatenation of the context vector and

hidden state of the decoder will be passed through the feed-forward neural network.

The network indicates the output word of each time step.

Figure 2.6: Illustration of the attention model proposed by [3] with yt being the target
word given a source sentence x1, x2, ..., xT , a sequence of annotations h1, h2, ..., hT ,
ai the alignment model, and si RNN hidden state at time i. The alignment model
determines the parts of the input sequence that are important to each output ex-
pression.

Transformers [70], with the help of an encoder-decoder model, try to model global

dependencies within input and output tokens in a sequence with the help of an atten-

tion mechanism. They have noteworthy advantages over the conventional sequential

models (RNN, LSTM, GRU, etc.), such as reducing the sequential computations

which enables them to be trained much more efficiently. Transformers are made of

15



two components, which are the encoder stacks and decoder stacks. The encoder

stacks take the inputs, and the decoder stacks consist of the same number of decoder

blocks and produce the output tokens. Within each encoder and decoder component,

there are also attention blocks that are referred to as multi-head self-attention layers,

in combination with a regular feed-forward neural network. For each input sequence,

these self-attention blocks are responsible for finding the relevant units (e.g. words)

for each individual unit of the same sequence by looking at the entire sequence at

once. Some language models only center on the decoder stacks of the transformer,

such as Generative Pre-trained Transformer 2 (GPT-2) [55] and GPT-3 [11]. Also

some models exist, such as BERT [23], which only deal with the encoder stacks of

the transformers (Fig 2.7).

Figure 2.7: The model architecture of the transformers [70].
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BERT (Bidirectional Encoder Representations from Transformers) introduced by [23]

is the first contextualized embedding approach that, as mentioned earlier, only uses

the encoder component of the transformers. BERT uses a technique called masked

language modelling (MLM), which allows the model to see the entire sentence or

text when predicting a token as opposed to the traditional recurrent neural network

(RNN) methods that use only the previously seen tokens in the sentence in order

to predict the next token. The BERT framework, which is unified across various

NLP tasks, has two steps that are pre-training and fine-tuning (Fig 2.8). In the pre-

training stage, the model is trained on a large corpus, and at the fine-tuning stage,

these pre-trained parameters will initialize the BERT model, and then the parameters

are fine-tuned in a downstream NLP task. The pre-training stage of BERT is done

by two unsupervised tasks, which are depicted on the left side of the Figure 2.8.

The first objective of BERT is called masked language modelling (MLM), in which

15% of the tokens of the input sequence are randomly masked, and the job of the

system is to predict those masked tokens. To help the model to better generalize, the

model randomly replaces some of these masked tokens with another token and tries

to predict the correct word in that position, and some of the words remain unchanged

from their original token. The other objective of BERT is a next-sentence prediction

(NSP) objective, which is important in tasks that require an understanding of the

relationship between a pair of sentences. When we pass two sentences to BERT as

inputs, BERT predicts whether the second sentence is the actual next sentence of

the first sentence. At the fine-tuning stage, by passing the appropriate input and

output to the BERT model, we can fine-tune all the parameters end-to-end. We can

use a shallow neural network at the top of the BERT as a classifier and achieve great

results [23].

There are two model sizes of BERT published. The smaller one is referred to as

BERTBase, and the larger one is BERTLarge which achieved state-of-the-art results
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Figure 2.8: The pre-training and fine-tuning steps of the BERT model [23].

[23]. The size of BERTBase and BERTLarge hidden layers are 768 and 1024, respec-

tively. The input to the BERT model has a special format. We have to add a special

[CLS] (classification) token to the begining of the first input sentence, and the final

hidden state of this token can be used as a sentence representation in classification

tasks. The words in a sentence are passed as an input to BERT, and the input

flows up the stack of encoders. The BERT model architecture is designed in a way

to be able to accept one sentence or pair of sentences. We separate the sentences

with a special [SEP] token indicating the boundary of the two given sentences. If we

have only one sentence, the [SEP] token is placed at the end of the given sentence.

In order to feed the sentences to BERT, we have to add a learned embedding to

each token, indicating whether they belong to the first or second sentence referred

to as the segment embedding. The positional embeddings are learned vectors for

every possible position which allow BERT to know the relative position of words in

a sentence. By adding the current token, segment, and position embeddings, we will

construct the input representation of each token (Fig 2.9).

RoBERTa (Robustly Optimized BERT Pretraining Approach) is a replication study

of the BERT model [45]. The idea behind this model is that the BERT model is

undertrained, and by using the new model, which the authors called RoBERTa, they

achieved new state-of-the-art on downstream tasks like question answering (SQuAD
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Figure 2.9: The input representation of the BERT model [23].

[56]) and reading comprehension (RACE [38]). The first modification of RoBERTa

is allowing the model to train longer with bigger batches and more data. As we men-

tioned earlier, one of the objectives of the BERT pre-training stage is the next sen-

tence prediction (NSP) task. As the second modification of the RoBERTa model, this

objective was removed. The next modification is letting RoBERTa train on longer

sequences, and instead of using the static masking of the BERT model, RoBERTa

uses a dynamic masking pattern. This means that every time a sequence is passed

into the model, a different masking pattern is created.

DistilBERT [62] is a distilled version of BERT with the same general architecture

as BERT. In this model the token embeddings along with some other layers of the

original BERT model are removed and the number of layers are half of the number

of BERT layers. The next sentence prediction is removed for DistilBERT and it

is trained on very large batches with dynamic masking. This model, which is a

compressed version of BERT, is faster than BERT and it needs less computational

resources. Another variant of BERT is BART [42] which is a denoising autoencoder

that is responsible to map a corrupted document derived from an original document

to the original document. This model achieved state-of-the results on a number of

text generation tasks.

The power of the BERT and RoBERTa models is that by passing the proper task-

specific inputs and outputs into the model, we do not need to modify the architecture
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of the models for downstream tasks, and we can then fine-tune all the parameters

end-to-end for a few epochs just by adding one additional task-specific output layer.

In addition to the fine-tuning approach, BERT and RoBERTa can also be used as

a form of feature extractor that can create contextualized embeddings, much like

ELMo. In the feature-based approach, word representations can be extracted from

the pre-trained model and they can be used as inputs to the architecture of the

downstream tasks. This model has been shown to slightly underperform the fine-

tuning approach [23, 54].

2.2 Multiword Expressions

In this section, we focus on the works done on multiword expressions (MWEs).

MWEs consist of a combination of words, and their meanings may not be predictable

from the meaning of each component word separately so that they may display

some form of idiomaticity. This causes multiword expressions to be very difficult for

NLP systems [71]. Previous works on MWEs have focused mainly on two subtasks,

which are MWE extraction and MWE identification [4]. In MWE extraction, we are

dealing with finding MWEs in text corpora, but in the identification task, we are

working on annotating MWEs (tokens) in running text [18]. Machine translation

[13], information retrieval [51], and opinion mining [9] can benefit from knowledge

of multiword expressions.

Much research in NLP has also focused on identifying whether a multiword expression

is compositional (e.g., credit card) or not. An MWE is non-compositional if its

meaning cannot be predicted from the meaning of its component words separately.

As an example, the meaning of the idiom shoot the breeze (“to chat”) does not

relate to the meanings of its component words, shoot and breeze [26]. The level to

which the meaning of an MWE can be determined by combining the meanings of
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its components shows the degree of compositionality of an MWE [4]. Some studies

focus on this problem at the type level where we see a multiword expression out of

context [5, 59, 60, 22] and some research considers MWE compositionality at the

token level and sees instances of the MWE in context [25, 50].

Some previous works in this area look at linguistic signals such as the lexical fixed-

ness of non-compositional MWEs [71], or the lexical flexibility of productive noun

compounds [39] to classify MWEs at the type level. Various studies concentrate

on detecting the compositionality of noun-noun MWEs like ivory tower [5], verb-

particle constructions like run away [7, 21] and verb-noun pairs like make a mistake

[32]. [26] studied the problem of MWE type classification for verb-noun combina-

tions (VNCs). They studied the properties of four classes of VNCs and developed

statistical measures to quantify these properties. After that, the measures were used

as features to train a decision tree classifier.

[32] assumed in a supervised approach that we can determine whether an MWE is

compositional or not with respect to its local linguistic context. In this study, the

authors compute a representation for a multiword expression as the way it is used in

a context and another representation of its meaning with respect to its component

words. By measuring the similarity between the mentioned representations, they

can distinguish compositional and non-compositional multiword expressions. At the

token-level, much work has considered unsupervised and supervised approaches to

predicting the idiomaticity of MWEs drawing on the context in which they occur.

It is important for NLP applications such as machine translation [30] and sentiment

analysis [74] to determine whether a particular MWE is used idiomatically with

respect to its usage in text.

[19] utilized lexico-syntactic fixedness (i.e., canonical forms) of MWEs and the dis-

tributional hypothesis to perform token-level unsupervised classification of VNCs.

Having information about the overall lexico-syntactic behaviour of an expression
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can be used to automatically identify whether an MWE is used idiomatically or

literally.

The unsupervised statistical approach of [25] classifies a particular type of multiword

expression, verb-noun pairs, at the token level as idiomatic if it occurs in one of its

pre-determined canonical forms for that expression and as literal otherwise. They

identify canonical forms based on the lexico-syntactic patterns — with respect to the

determiner, number of the noun, and voice of the verb — that a verb-noun idiomatic

combination frequently occurs in. Their method shows that the idiomatic expression

is more likely to appear in the canonical form, but this is not the case for literal

expressions. In the following examples of lose head, you can see 1 is an idiomatic

usage which is in the canonical form, in which the verb lose has active voice, the

determiner is null and the noun is in the singular form. In contrast 2 is a literal

combination that is not in the canonical form.1

1. I’m not going to lose my head and try and rush out at the first chance.

2. Within seconds her blonde head was lost in the crowds

[27] proposed another unsupervised approach based on k-means clustering, which

clusters usages of verb-noun combinations (VNCs) which are represented based on

word embeddings [48]. If the majority of the instances in a cluster are in canonical

form, the label of the cluster is idiomatic, and if the instances are mainly in non-

canonical form, the label of the cluster is literal. The results of this approach do

not consistently outperform the unsupervised approach proposed by [25] based on

canonical forms, which is a strong baseline.

[44] proposed a generalized model based on semantic compatibility to build an idiom

usage recognizer. They train a continuous bag-of-words (CBOW) model without any

supervision to identify whether an MWE instance is used figuratively or literally.

1These examples are taken from the VNC-Tokens dataset [20].
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They treat each multiword expression as a single word and train a model on large

text corpora to predict the semantic compatibility between the context and that

single word. After that, they used the trained model to find the similarity between

the context and the literal sense of the idiom.

Some works are further focused on a particular type of MWE. [24] proposed a su-

pervised approach using a support vector machine (SVM) for classifying instances

of multiword expression tokens focused on VNCs using various combinations of lin-

guistically motivated features such as part-of-speech tags, lemma form, and named

entities.

In the same vein as the former approach, [66] focus on supervised token-based identi-

fication of MWEs, again VNCs. This study showed that lexical and syntactic context

representations derived from word embeddings, and the information gained from ex-

ternal arguments of the verb and the noun elements of the expression give excellent

performance in the classification task.

[61] proposed that embedding the entire sentence that a VNC occurs in using skip-

thoughts vector [35] representations serves as a good feature for classifying VNC

instances as idiomatic or literal with SVM and k-nearest neighbours.

[33] proposed a model based on word embeddings to classify instances of VNCs as

idiomatic or literal. In order to represent the context of an MWE, they used a

simpler approach than [61] by averaging the embeddings of the surrounding words

in that sentence. The results of their work showed substantial improvements when

they incorporate the knowledge of lexico-syntactic fixedness based on the method

of [25] with the embedding-based approach they propose. They trained word2vec’s

skip-gram [48] on a Wikipedia corpus with more than 2 billion tokens. They used the

VNC-Tokens dataset [20] that consists of sentences from the British National Corpus

[12] with instances of VNCs annotated as idiomatic or literal. They considered a

supervised binary classification task using a support vector machine (SVM).
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Recently contextualized embeddings have been applied to problems in multiword

expressions. The work done by [64] is on multiword expressions using contextualized

embeddings. They studied various representation methods for spans of tokens and

found that contextualized embeddings can better capture the information needed for

predicting various MWE properties, but do not consider VNC idiomaticity.

Other recent work has specifically focused on VNCs. [52] leveraged contextualized

embeddings to represent context words and the target multiword expression in order

to automatically recognize idiomatic tokens. Based on their hypothesis, the inner

product of context word vectors with the vector representing a target expression in

the literal case should be larger than for idiomatic expressions since vector repre-

sentations of literal usages predict well local contexts, thereby distinguishing literal

from idiomatic usages.

[28] propose a supervised method to classify multiword expressions based on their

context as idiomatic or literal. In this approach, the lexicalized component words of

VNC instances are merged, and they are represented using word and contextualized

[47, 23] embeddings in order to take the context of each multiword expression into

account. Merging the VNC component words shows some improvements, but their

results do not outperform the results of [33].

The most similar work to ours is the approach proposed by [37] to represent the

instances of potentially-idiomatic expressions (PIEs), including VNCs, based on the

BERT [23] contextualized embeddings model. They investigate whether the infor-

mation captured in these types of embeddings can assist in the task of classifying

the usages of PIEs as idiomatic or literal by supervised and unsupervised classifiers.

However, they do not consider evaluation on expressions that are unseen during

training. As we may not have enough annotated training data for every VNC type,

having a model that is able to generalize to VNCs that are unseen during training

is important.
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In our work, we focus on distinguishing literal from idiomatic instances of VNCs.

Specifically, we also consider expressions that are unseen during the training stage

in our experiments.
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Chapter 3

Proposed Model

Verb-noun combinations (VNCs) are potentially idiomatic expressions whose mean-

ings may not be directly related to their component words. The fact that VNCs are

commonly used in language, and their meanings are often not predictable, makes

them an essential topic of research for NLP [63]. This thesis proposes a supervised

approach to distinguish idiomatic and literal usages of VNCs in a text based on

contextualized representations, specifically BERT [23] and RoBERTa [45], which are

powerful language models. We evaluate the performance of BERT and RoBERTa

contextualized representations by fine-tuning both models to automatically identify

whether an MWE is idiomatic or literal in a running text.

3.1 Contextualized Embedding

Before considering how to represent VNC instances with contextualized embeddings,

we first discuss the BERT and RoBERTa tokenization models which affect how we do

this. When tokenizing a word under the BERT [23] and RoBERTa [45] models, the

tokenizer first tries to break the word into the largest possible subwords that exist in

the vocabulary. After that, it will split the word into individual characters. So a given

word can be split into multiple pieces. At the beginning of every sequence, a special
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[CLS] token appears. This can be used as the aggregate sequence representation for

downstream classification tasks.

In our first approach, we represent a VNC token instance using the [CLS] token for

the sentence in which it occurs. The [CLS] representation, which is a 768-dimensional

vector, is passed to the network we build on top of the pre-trained model. We refer

to this approach as “CLS”. The details of this model will be discussed in the next

section.

After considering the [CLS] representation to represent each token instance of a

VNC, we further consider the representation of separate component words of the

VNC, i.e., the verb and the noun. In our next approach to represent a given VNC

instance, we first form a representation of each of its verb and noun component words

by averaging the embeddings of their pieces.

We then study two approaches to combining the representations of the verb and

noun. Specifically, we consider averaging and concatenating the verb and noun

representations. Each of the verb and noun representations is a 768-dimensional

vector. When averaging the vectors of the verb and noun, as a result, we have a

768-dimensional vector to represent a VNC. We refer to this approach as “Average”.

When concatenating the verb and noun representations, we have a 1536-dimensional

vector, and we refer to this approach as “Concat”.1

We also considered other variants of BERT. DistilBERT [62] is a compressed version

of BERT that only uses six transformer layers compared to 12 layers for BERTBase,

and has lower resource requirements. The preliminary results using DistilBERT were

not as good as those for BERT and RoBERTa. We also considered BART [42], which

uses an arbitrary noising function and learns a model to reconstruct the original text.

Again the results did not improve over BERT and RoBERTa. We therefore do not

1In preliminary experiments on development data, we also considered concatenating and av-
eraging these representations with the representation of the CLS token, but this did not give
improvements, so we do not further discuss these approaches.
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further consider distilBERT or BART.

3.2 Supervised Model

We aim to investigate the strength of the contextualized representations we formed

for VNC token instances that we discussed earlier, at capturing information about

the idiomaticity of VNCs. We test this in a supervised system for classifying the

usages of a VNC as idiomatic or literal.

3.2.1 Fine-tuning

Our approach is based on fine-tuning pre-trained BERT and RoBERTa models for

binary classification of VNC token instances. In this approach, a classification com-

ponent is added to the pre-trained model, and all the parameters are fine-tuned on a

downstream task. For our classification component, we use two fully-connected lay-

ers on top of either BERT or RoBERTa to classify instances of VNCs as idiomatic

or literal.

The first layer of our network has the same dimensionality as the representation of

the VNC (i.e., 768 for CLS and Average, and 1536 for Concat) and uses the ReLU

activation function. The second layer has 512 dimensions and uses the softmax

activation function.

Our model is illustrated in Figure 3.1 with x as input to the model which is the

representation of a VNC instance and y1 and y2 are the labels idiomatic and literal.2

The canonical form feature [25] we discussed in the previous chapter has been shown

to be informative as to whether an instance of a VNC is idiomatic or literal [33]. We

therefore also consider whether incorporating information about the lexico-syntactic

2We also experimented with a feature-based approach in which the representations of VNC
instances are extracted from the pre-trained model and then used in an SVM classifier. Preliminary
results showed relatively poor performance, and we therefore decided not to further consider this
approach.
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Figure 3.1: Our proposed model

fixedness of VNCs into our approach gives improvements. Specifically, we concate-

nate a single binary feature indicating whether a VNC usage is in a canonical form,

referred to as CF, with each of the various representations of the VNC based on

contextualized embeddings. In this case we represent a VNC with a 769-dimensional

vector for the “CLS” and “Average” approaches, and a 1537-dimensional vector for

the “Concat” approach.

The pre-trained BERT and RoBERTa models we use have 12 layers. In all the

experiments we discuss, we use the representations of the last layer of the pre-trained

model (i.e., 12-th layer). We then further study the effect of using different hidden

layers of the BERT and RoBERTa models.
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Chapter 4

Experimental Setup

In this chapter, we will discuss the datasets we used in our work. We will then

discuss the metric we used for evaluating our models, and then the implementation

of our models and parameter settings used.

4.1 Dataset and Evaluation

The dataset we used for our work is the VNC-Tokens dataset [20] which is the same

dataset that is used by [33, 61]. This dataset contains 53 different VNC types, and

their instances are extracted from the British National Corpus [12] and have been

manually labelled at the token level as to whether they are literal or idiomatic usages.

There are 53 expressions in the VNC-Tokens dataset, and they are divided into three

subsets: DEV, TEST, and SKEWED. The SKEWED part of the dataset includes

25 expressions with many more instances in one class than the other. DEV and

TEST include 14 expressions each that are more balanced between their idiomatic

and literal usages, and we only consider DEV and TEST following previous work

[61, 33]. The DEV and TEST parts of the dataset include a total of 594 and 613

VNC tokens, respectively, that are annotated as either literal or idiomatic usages.1

1Both DEV and TEST also contain instances that are annotated as “unknown”; following [25]
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The details of the expressions and the number of instances annotated as idiomatic

and literal in DEV and TEST are given in Table 4.1.

In our first experiment, we consider the same setup as [33], referred to as “all expres-

sions” here. For each of DEV and TEST, we randomly partition the instances into

training (roughly 75%) and testing (roughly 25%) sets, keeping the ratio of idiomatic

to literal usages of each expression balanced across the training and testing sets. We

repeat this random partitioning ten times.

We do not expect to have annotated instances of all VNC types, and this limits

the applicability of models developed for the all expressions setup. Therefore, we

are particularly interested in determining whether a supervised model is able to

generalize to expressions that were unseen during training. Here we consider an

experimental setup proposed by [27], referred to here as “unseen expressions”. Here

we hold out all instances of one VNC type for testing and train on all instances of

the remaining types (within either DEV or TEST). We repeat this fourteen times

for each of DEV and TEST, holding out each VNC type once for testing.

For both experimental setups — i.e., all expressions and unseen expressions — we

train and test models on DEV for preliminary experiments and setting parameters.

We then report the final results by training and testing models on TEST.

The idiomatic and literal classes are roughly balanced. Following [33] we therefore

use accuracy as our evaluation metric. For the all expressions setup, we report

average accuracy across the 10 runs. In the unseen expressions setup, we repeatedly

hold out each expression until all instances of each expression (within either DEV

or TEST) have been classified and then compute the accuracy.

we exclude these instances from our study.

31



Set Expression #Idiomatic #Literal Total

DEV

blow trumpet 19 10 29
find foot 48 5 53
get nod 23 3 26
hit road 25 7 32
hit roof 11 7 18
kick heel 31 8 39
lose head 21 19 40
make face 27 14 41
make pile 8 17 25
pull leg 11 40 51
pull plug 45 20 65
pull weight 27 6 33
see star 5 56 61
take heart 61 20 81
Total 362 232 594

TEST

blow top 23 5 28
blow whistle 27 51 78
cut figure 36 7 43
get sack 43 7 50
get wind 13 16 29
have word 80 11 91
hit wall 7 56 63
hold fire 7 16 23
lose thread 18 2 20
make hay 9 8 17
make hit 5 9 14
make mark 72 13 85
make scene 30 20 50
pull punch 18 4 22
Total 388 225 613

Table 4.1: The number of token instances in each class (i.e., idiomatic and literal)
for each expression in the DEV and TEST datasets.
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4.2 Vector representations

In order to prepare a sentence to be passed to BERT and RoBERTa, first, these

models tokenize the sentence. In Figure 4.1 we show how BERT handles a single

sentence in order to pass it to its pre-trained model. The BERT and RoBERTa

models receive a fixed length of sentence as input. This length is set to the maxi-

mum length of sentences from the dataset. For sentences that are shorter than the

maximum length, we add padding tokens to the sentences to make up the length.

Then the BERT and RoBERTa tokenizers split the sentence into tokens which might

split a word into multiple pieces as shown in Figure 4.1. In the next step, each token

is replaced with its id as present in the BERT and RoBERTa tokenizer vocabularies.

We mentioned earlier in Section 3.1 that the BERT and RoBERTa tokenizers can

break words into pieces. Therefore, to represent a word, we average the embeddings

for its pieces.

Figure 4.1: The tokenization process of BERT to prepare a sentence to pass it to
the BERT model [2].

We consider twelve different representations for VNC instances. We consider BERT

and RoBERTa, in 3 different approaches, optionally incorporating information about

lexico-syntactic fixedness. The first approach is to represent each token instance of

a VNC with the [CLS] token and use the 768-dimensional vector representation
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corresponding to this token. We refer to this approach as “CLS”. Then we pass this

vector representation to the classification component of the system to classify an

instance as idiomatic or literal. We further consider concatenating a single binary

feature indicating whether a VNC usage is in a canonical form, referred to as CF,

with each of the representations of the VNC based on the CLS token to find out

whether incorporating information about the lexico-syntactic fixedness of VNCs into

our approach gives improvements.

Next, we consider representing an instance of a VNC using the representations of

VNC component words, i.e., the verb and noun. Here, we represent a VNC by

averaging the representations of its verb and noun component words to form a 768-

dimensional vector representation. Moreover, we again consider concatenating the

CF feature to this representation to form a 769-dimensional vector representation

which incorporates lexico-syntactic fixedness information. In the last approach, we

represent a VNC by concatenating the representations of its verb and noun com-

ponent words to form a 1536-dimensional vector representation. We again consider

concatenating the CF feature to this representation to form a 1537-dimensional vec-

tor representation. Then we pass each of these representations to the classification

component to classify the VNC instance as idiomatic or literal. In Table 4.2 a sum-

mary of the approaches we discussed here is given.

4.3 Implementation and Parameter Settings

We use Huggingface [75] implementations of BERT and RoBERTa. For BERT, we

use bert-base-uncased, which is pre-trained on lower-cased English text. This model

has 12 layers and a hidden layer size of 768 with 110M parameters overall. For

RoBERTa, we use roberta-base, which has the same number of hidden layers, and

hidden layer size, as bert-base-uncased.
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Model Representation Canonical Form

BERT

CLS
-CF
+CF

Concat
-CF
+CF

Average
-CF
+CF

RoBERTa

CLS
-CF
+CF

Concat
-CF
+CF

Average
-CF
+CF

Table 4.2: A summary of the twelve approaches we experiment with can be seen
here.“-CF” means we do not incorporate the canonical form feature and “+CF”
means we do use this feature.

In order to fine-tune pre-trained BERT and RoBERTa models for binary classification

of VNC token instances, a classification component is added to the pre-trained model,

and all the parameters are fine-tuned on a downstream task. As we discussed in

Section 3.2.1 our classification component has two fully connected layers that take

the context representations of VNCs as input and classify them as either literal or

idiomatic.

We train our models using Adam optimizer [34] to minimize the cross-entropy loss.

We use the default dropout of 0.5 for the network layers, which are on top of either

BERT or RoBERTa. For fine-tuning, we use the parameters recommended by [23].

We use batch sizes of 8, 16, or 32; epochs between 2 and 4; and a learning rate of

2e-5, 3e-5, or 5e-5. We perform a grid search over these parameter settings on DEV.

We report results for the best parameter settings on DEV and then use only these

parameter settings for experiments on TEST. We repeat the experiments 10 times

with different random seeds and report the mean accuracy and standard deviation

over the runs.
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Chapter 5

Results

In this section we compare our proposed approach discussed in Section 3.2 based on

contextualized embeddings against the unsupervised approach of [25], which is based

on canonical forms, and the supervised approach proposed by [33].

At first, we consider results for the all expressions experimental setup in which the

model is tested on instances of expression observed during training. Results are

given in Table 5.1. On each dataset, our proposed method based on contextualized

embeddings outperforms all of the baselines. This finding indicates that contextual-

ized embeddings are able to better capture knowledge of the idiomaticity of VNCs

than previous approaches. On the DEV set, the best results are achieved using

BERT with CLS. On TEST, the RoBERTa model using the Concat representation

without the CF feature performs best of approaches that do not use this feature,

while BERT using the CLS approach with the CF feature outperforms all other ap-

proaches. Overall, it looks like BERT using CLS performs well on both datasets.

Although we see that Concat on TEST with RoBERTa and without the CF feature

has a higher accuracy here, given the standard deviations that we observe, there does

not appear to be a significant difference between approaches, and all the methods

are quite similar.
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Representation Model
DEV TEST

-CF +CF -CF +CF

CLS
BERT 90.7 ±0.53 90.8 ±0.51 89.3 ±1.11 89.8 ±0.71
RoBERTa 88.3 ±0.96 89.9 ±0.66 88.6 ±0.87 89.0 ±0.48

Concat
BERT 89.8 ±0.90 90.4 ±0.80 89.2 ±0.74 89.2 ±0.63
RoBERTa 89.3 ±0.78 89.7 ±0.71 89.6 ±0.59 87.8 ±0.89

Average
BERT 90.1 ±0.54 90.5 ±0.75 89.4 ±0.50 89.7 ±0.49
RoBERTa 89.6 ±0.85 89.6 ±0.86 89.4 ±0.74 88.51 ±1.27

Most Frequent Baseline 63.4 63.4 62.9 62.9
Unsupervised CForm [25] 75.0 75.0 71.1 71.1
Supervised word2vec [33] 82.5 85.6 81.5 84.7

Table 5.1: % accuracy and standard deviation for the all expressions experimental
setup on DEV and TEST, for BERT and RoBERTa, for each approach to repre-
senting instances with and without the canonical form (CF) feature. % accuracy for
the baselines is also shown. The best accuracy for each experimental setup, on each
dataset, with and without the CF feature, is shown in boldface.

Next, we analyze the impact of the CF feature. Overall, the results are not consistent

over the different representations. In some cases incorporating this feature improves

performance, while in other cases the performance is similar or worse. Focusing on

the method that performs best, BERT with CLS, using the canonical feature gives a

small improvement on both DEV and TEST. However, this improvement is substan-

tially smaller (i.e., in terms of percentage points) than the improvement obtained

by [33] when using the CF feature. These findings suggest that contextualized em-

beddings can better capture the linguistic knowledge encoded in this feature than

conventional word embeddings, which [33] use to represent VNC instances.

Turning to consider the different ways of representing VNC instances, Concat and

Average do not improve the CLS approach on TEST, indicating that sentence-level

representations are able to capture knowledge of VNC idiomaticity.

We now consider results for the unseen expressions experimental setup in which mod-

els are tested on instances that were not observed during training. Table 5.2 shows

the results. On DEV, we get the best results using BERT with CLS, however, the

accuracy for this approach drops substantially on TEST. RoBERTa with CLS per-
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Representation Model
DEV TEST

-CF +CF -CF +CF

CLS
BERT 83.5 ±0.97 83.4 ±0.65 78.6 ±1.78 79.8 ±1.55
RoBERTa 81.8 ±1.60 82.4 ±1.20 82.3 ±1.76 80.6 ±2.35

Concat
BERT 83.2 ±1.07 83.1 ±0.74 78.7 ±1.47 78.1 ±2.70
RoBERTa 81.6 ±1.19 80.8 ±2.42 79.2 ±1.70 77.5 ±2.64

Average
BERT 81.7 ±1.02 82.4 ±2.56 79.3 ±3.01 77.2 ±2.65
RoBERTa 82.6 ±1.90 82.7 ±1.26 81.3 ±2.48 79.7 ±2.27

Most Frequent Baseline 60.9 60.9 63.3 63.3
Unsupervised CForm[25] 73.6 73.6 70.0 70.0
Supervised word2vec [33] 72.3 76.4 74.6 77.8

Table 5.2: % accuracy and standard deviation for the unseen expressions experi-
mental setup on DEV and TEST, for BERT and RoBERTa for each approach to
representing instances, with and without the CF feature. % accuracy for the base-
lines is also shown. The best accuracy for each experimental setup, on each dataset,
with and without the CF feature, is shown in boldface.

forms more consistently across DEV and TEST and performs best on TEST. Further

analyzing the impact of incorporating the CF feature for both BERT and RoBERTa

on DEV we do not see a clear improvement when considering the standard deviation

across runs. Focusing then on results on TEST for BERT and RoBERTa using CLS,

without using the CF feature, both models outperform the baselines, including the

approach of [33] which incorporates the CF feature, although this difference does

not appear to be significant for BERT. Given the substantial improvements over the

unsupervised CForm baseline [25] and the most-frequent class baseline (63.3% for

TEST), these findings suggest that the classifiers (including the approach of [33])

have learned information about the idiomaticity of VNCs, that is not restricted to

specific expressions, as in the case of the all expressions setup.

In an effort to understand why BERT using CLS performed relatively poorly on

TEST, we compared the performance of the BERT and RoBERTa models using CLS

representation on TEST without incorporating the CF feature in Table 5.3 based on

accuracy across the various expressions. However, these results do not show any clear

difference between the performance of the models on these expressions. Therefore,
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Multiword Expression BERT RoBERTa
blow top 75.4 76.8
blow whistle 76.7 85
cut figure 72.3 73
get sack 73 85.6
get wind 74.5 73.8
have word 81.4 84.9
hit wall 84.3 94.4
hold fire 79.6 82.2
lose thread 69 63.5
make hay 84.7 86.5
make hit 70 65.7
make mark 86.4 86.7
make scene 70.6 74.2
pull punch 90 80.9

Table 5.3: % accuracy across various expressions in the TEST dataset for the unseen
experimental setup for both the BERT and RoBERTa models using CLS represen-
tation without the CF feature.

we can conclude that there is not a specific expression that causes the drop in BERT

performance on TEST data using the CLS representation.

Finally, we projected the computed vector from the hidden layer of the classification

component discussed in Section 3.2.1 into two-dimensional space using t-SNE [69] for

the unseen expressions experiment with RoBERTa using CLS without incorporating

the CF feature. The reason we focus on the RoBERTa model using CLS is because

it is the simplest model and as it performs roughly as well as, or better than, the

more complex models (Concat and Average).

Figure 5.1 shows an example VNC type in the TEST dataset and shows that our

model separates idiomatic and literal instances. We can see a separation of the

idiomatic instances, which are blue dots in the upper right corner of the picture, and

literal instances, which are red dots in the bottom left corner of the picture. This

shows that the classifier is able to separate the idiomatic and literal representations

in this 512-dimensional space which is projected down to two-dimensional space,
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however, this separation is not perfect.

Figure 5.1: t-SNE projection of 512 hidden units in the classification component of
the RoBERTa model using CLS in the unseen expression setup without incorporating
the CF feature for the VNC, blow whistle, from the TEST set. Blue points are
idiomatic VNC instances and red points are literal VNC instances.

We further projected the vector representations of the hidden layer of the classifica-

tion component for the unseen expression without incorporating the canonical form

feature for all the VNC instances of all the VNCs in TEST using t-SNE (Figure 5.2).

We can conclude from this figure that we cannot see global separation between the

idiomatic and literal instances, but rather the separation is much more local between

idiomatic and literal instances.

In experiments, until now we have used representations from the final layer of BERT

and RoBERTa. We now consider the effect of using different hidden layers, focusing

on the unseen expressions setup in both the BERT and RoBERTa models using CLS.

The reason behind exploring these approaches is that the best performance for the

unseen expressions setup is achieved using one of BERT or RoBERTa using CLS
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Figure 5.2: t-SNE projection of 512 hidden units in the classification component of
VNC instances for all the instances in TEST for the unseen expressions setup with
RoBERTa using CLS, without incorporating the CF feature. The circles represent
the idiomatic VNC instances and the ×s represent the literal VNC instances.

which is the simplest approach. Results are shown in Table 5.4.1 In all cases, except

for BERT on TEST, the final layer performs best. This is in line with the findings

of [31] that BERT can capture structural properties and that the upper layers of

BERT encode semantic information. For BERT, where accuracy was low on TEST

1Results are only shown for layers 9–12. The overall trend for other layers is that lower layers
achieve lower accuracy.
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Model Dataset
Layer

9 10 11 12
BERT DEV 82.0 82.2 82.6 83.5
BERT TEST 79.2 79.8 80.2 78.6
RoBERTa DEV 75.6 78.2 79.8 81.8
RoBERTa TEST 71.8 77.7 79.5 82.3

Table 5.4: % accuracy and standard deviation for the unseen expressions experimen-
tal setup on DEV and TEST using BERT and RoBERTa with CLS representations
from the indicated layers. The best results for each model and dataset are shown in
boldface.

relative to DEV in Table 5.2, on TEST the second last layer performs best.

Overall, considering the qualitative and quantitative results we can conclude that

the approaches using contextualized embeddings give improvements over approaches

that do not use contextualized embeddings. Using the CF feature does not improve

the results and it appears that contextualized embeddings are able to capture the

linguistic knowledge encoded in this feature. Moreover, our results outperform the

baselines [25, 33] on the unseen expressions experiment, indicating that the model has

learned information about the idiomaticity of VNCs generally, that is not restricted

to the expressions it was trained on.
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Chapter 6

Conclusion

MWEs have varying degrees of compositionality and they have received a lot of atten-

tion from researchers. However, there are relatively few resources, such as manually

annotated corpora in various languages for MWEs, which makes working with them

challenging. To build a robust natural language processing technology, handling

MWEs is very important as knowledge of MWEs is essential in many downstream

applications such as machine translation and information retrieval. In this thesis,

we focus on VNCs, which consist of a verb with a noun in its direct object position.

VNCs are a common kind of MWE in English and also cross-lingually.

We have studied two different experimental setups for classifying VNCs as idiomatic

and literal. In the first experimental setup, “all expressions”, we train and test on

instances of the same VNC types. However, as we are particularly interested in

determining whether a supervised model is able to generalize to expressions that

were unseen during training, we consider another experimental setup, referred to as

“unseen expressions”. In this experimental setup, we hold out all instances of one

VNC type for testing and train on all instances of the remaining types.

This study proposes a supervised approach to distinguish idiomatic and literal us-

ages of VNCs in a text based on contextualized representations, specifically BERT
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and RoBERTa, powerful language models. We represent a VNC token instance with

three different approaches with these two models, including “CLS”, “Concat”, and

“Average”. In the “CLS” approach we use the representation of the [CLS] token of

the BERT or RoBERTa model to represent a VNC token instance. For “Average”

and “Concat” we combine the representations of the verb and noun by averaging

and concatenating them, respectively. We also incorporate a canonical form fea-

ture to the contextualized embeddings to see whether adding this feature improves

the performance or not. By adding this feature we incorporate information about

the lexico-syntactic fixedness of VNCs. We evaluate the performance of BERT and

RoBERTa contextualized representations by fine-tuning both models to automati-

cally identify whether an MWE is idiomatic or literal in a running text.

The main research question of this study is Does an approach to identifying VNC

idioms that incorporates contextualized embeddings outperform prior methods that

do not use contextualized embeddings? We showed that the proposed supervised

approach, in the “all expressions” experimental setup using contextualized embed-

dings, is able to outperform the previous best approach. We also experiment with

incorporating the canonical form feature into our system, and we showed that con-

textualized embeddings capture this information, and that adding this feature to the

contextualized embedding does not add extra information about VNC idiomaticity.

Prior works in this area incorporate this feature with representations from standard

word embedding methods and have obtained substantial performance increases by

doing so.

The second research question that we answer in this study is Is an approach to iden-

tifying VNC idioms that incorporates contextualized embeddings able to generalize to

unseen expressions? The results show that our proposed method in the “unseen ex-

pressions” experimental setup, can generalize to expressions that are unseen during

the training stage. In order to do that, we leave each VNC idiom and its corre-
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sponding sentences out of the training dataset, let the system label the instances

of the VNC that is unseen during the training and repeat this for each VNC type.

We also incorporate the canonical form feature to see whether adding this feature

improves the system. This is an interesting experimental setup because we may not

have enough annotated training data for every VNC type. Our findings indicate that

the model has learned information about the idiomaticity of VNCs more generally,

not just for specific expressions that are present in the training data. In other words,

our model is able to generalize to VNCs that are unseen during training.

The contributions of this thesis can be clearly listed as follows:

1. Proposing an approach to identifying VNC idioms as idiomatic or literal that

incorporates pre-trained contextualized embeddings.

2. Finding that contextualized embeddings are able to capture the linguistic

knowledge encoded in the canonical form feature.

3. Proposing an approach to identifying VNC idioms that is able to generalize to

unseen expressions.

For future work, different lines of research can be taken. First, in this study, we used

BERT and RoBERTa as contextualized embeddings. We intend to explore other

variants of BERT to see whether they improve our results. For instance, we use

BERTBase as we mentioned in Section 4.3 and in the future we could use BERTLarge as

it is a larger and more complex pre-trained model than BERTBase, we may get better

results. In order to fine-tune BERT and RoBERTa for our classification task, we

add a classification component on top of their models. We could consider a different

neural network architecture for the classification component. Adding more layers or

modifying the number of hidden units may improve the results. Other than these,

we can also explore the BERT and RoBERTa layers more thoroughly as different

layers of the BERT model capture different information [31]. We already explored
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the performance of the individual layers of BERT and RoBERTa and reported their

results in Table 5.4. However, we can also use the combination of representations

of various layers by concatenating or averaging them. In this way, we can have a

thorough analysis to see where the information about the idiomaticity of VNCs, and

more generally MWEs, are encoded within BERT and RoBERTa.

Another future direction that we want to consider is to experiment with XLNet [76].

This model uses an improved training model and more training data compared to

BERT. In this thesis, we are dealing with a particular text classification problem. We

classify a VNC instance as idiomatic or literal. XLNet uses a permutation language

modelling objective, in which all the tokens are predicted in random order, instead of

a masked language modelling objective, in which only 15% of the tokens are masked

and predicted, that is used in BERT and RoBERTa as discussed in Section 2.1.3.

The reason behind using XLNet is that this generalized autoregressive pretraining

method outperforms BERT in many tasks such as text classification [76].

We can also build a system that works cross-lingually in future work. In our model,

we showed that we could train our model on English VNCs, and with that, we can

classify the English instances of other VNCs that are not present during the training

using BERT. Interesting future work would be to see as BERT is encoding knowledge

of English VNCs that are not particular to some specific expression, would a model

like multilingual BERT (mBERT) encode knowledge of idioms that isn’t particular

to any language? mBERT provides sentence representations for various languages,

which are beneficial for many multi-lingual tasks [43]. For instance, we can train a

model on English, German, French, and Spanish idioms and then evaluate our model

on Dutch idioms.

The last future direction that we intend to consider is to conduct further research on

a system that can be used for all types of multiword expressions and that is not just

restricted to a specific type of multiword expression. We have only considered VNCs
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but there are other common types of multiword expressions such as verb-particle

constructions. In this case, the goal of this system would be to identify spans of

tokens that are multiword expressions.
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