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Abstract 

Linear and nonlinear wave equations are important in various aspects of 

mathematics and physics, including the study of black holes. After a brief 

survey of the sine-Gordon equation (SGE), this report presents a fourth-order 

numerical approximation scheme for solving equations of this type. This is 

followed by a numerical investigation of SGE in the presence of the Poschl­

Teller potential. We close with a discussion of the application of this method 

to the study of black hole dynamics. 
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Chapter 1 

Introduction 

In this chapter, we introduce the sine-Gordan equation and some of its mod­

ifications and demonstrate how it arises when one studies the dynamics of 

mechanical transmission lines. 

1.1 The sine-Gordan equation and its modi­

fications 

The sine-Gordon equation (SGE) is a nonlinear hyperbolic partial differential 

equation of the form 

'l/Jtt - 'l/Jxx + sin 'l/J = 0, (1.1) 

where 'ljJ = 'l/J(x, t). This equation has many solutions, some of which are 

soliton solutions. A soliton is self-reinforcing solitary wave, or pulse, which 
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maintains its velocity and shape. This equation first arose in the study 

of surfaces of constant negative curvature [l]. The equation also appears 

in a number of physical applications including relativistic field theory [1], 

Josephson junctions [1] and mechanical transmission lines [9]. 

Modified sine-Gordan equations (MSGEs) also appear in applications. 

An example is that of the long Josephson junction, which is governed by 

1Ptt - 1Pxx + sin¢ = -<Xlft + "'(, (1.2) 

where a is the dimensionless damping parameter, and "Y is a normalized bias 

current. Another example occurs when considering a field ¢ propagating 

around a black hole with a self-interaction ex sin¢ [3]. The equation of 

motion for such a field is 

'I/Ju - 1/Jxx + V(x)tj, + Q(x) sin Ct)) = 0. (1.3) 

where V ( x) is the ''spatially dependent" potential appearing in the study of 

quasinormal modes of scalar field about black holes [8], while p(x) and Q(x) 

are known functions. 

In this report we will discuss the analytic and numeric solution of the 

SGE and certain MSGEs. Our purpose in studying SGE in chapter 2 is to 

establish some of its fundamental properties, including the presence of soli­

ton solutions and the use of the Backlund transformation to generate these 

solutions. We will then develop a numerical scheme for the investigation of 
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MGSE in Section 3. Our results from Section 2 will be used as a test for 

the numerical scheme and as a basis for comparison with MSG E. In partic­

ular, we will investigate how the introduction of the Poschl-Teller potential 

affects the behaviour of the evolution of the moving breather solution to SG E. 

1.2 Application: mechanical transmission lines 

Before discussing the solution of the SGE in the next chapter, we present 

a detailed derivation of how the equation arises from an analysis of the dy­

namical of a mechanical transmission line, following the treatment in (9]. 

A mechanical transmission line consists of a series of pendula connected 

by a steel spring and supported horizontally by a thin wire, as shown in 

Figure 1.1. Each pendulum is free to swing in a plane perpendicular to the 

wire. A displacement in any pendulum results in a force that causes a wave 

to propagate through the line. A dramatic effect occurs if a single pendulum 

at one end is quickly turned one full revolution around the wire. This causes 

the formation of a kink, as shown in Figure 1.2. 

We assume that each pendulum has mass m and length l, and that 

neighbors are a fixed distance ~x apart. We use 1/Ji(t) to denote the angle 

of rotation of the ith pendulum from its equilibrium position at time t, as 

shown in Figure 1.3. The gravitational force -mg acting on the ith pendulum 

produces a tangential force mg sin( 1/Ji) which tries to rotate the pendulum 

3 
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'·· ••• ••• •• 
Figure 1.1: Pendula attached to horizontal spring. [R. Knoble, 2000] 

Figure 1.2: A large disturbance moving down the pendulum line. [R. Knoble, 
2000] 
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Figure 1.3: Angles of rotation of the pendula. [R. Knoble, 2000] 

mgcos(l/1;) 

F=m,: 

'mgsin(Y,;) 

Figure 1.4: The gravitational force acting on the ith pendulum. [R. Knoble, 
2000] 
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downward, as shown in Figure 1.4. The force equation for planar pendulum 

is given by 

F = -mgl sin 'ljJ (1.4) 

where g is the gravity constant. By Hooke's, law the torque on node i from 

the spring is given by 

(1.5) 

where k is the spring constant. Adding the force of gravity to (1.5), and 

setting l, g, and k to be equal to 1 yields 

(1.6) 

Now divide (1.6) by ~x and take the limit ~x -t 0. Suppose that m changes 

with ~x so that m/ ~x = 1. In the limit, we obtain: 

'l/Jtt - 'l/Jxx + sin 'l/J = 0, 

which is the SGE. 
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Chapter 2 

The sine-Gordon Equation 

In this chapter, we discuss some of the analytic properties of SGE. We begin 

with a derivation of the form of SGE in characteristic coordinates. This 

is followed by a discussion of Backlund's transformation and its usefulness 

in generating new solutions from known ones. We then discuss the kink­

antikink, standing breather, and moving breather solutions. 

2.1 Characteristic coordinates 

Much of the analysis of the SG E is easier if one transforms to characteristics 

coordinates ( u, v), defined by 

u = t- x, V = t + X. (2.1) 
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We now show that SGE in these coordinates takes the form 

41/Juv = - sin 1/; (2.2) 

where 1/; = 1/J(u, v). Computing partial derivatives with respect tot and x, 

and using 1Puv = 1Pvu, we find 

1Ptt = 1Put 1Pvt = 1P-uu + 21/Juv + 1Pvv, 

1Pxx = -1/Jux + 1Pvx = 1Puu - 21/Juv + 1Pvv· 

Subtracting (2.3) from (2.4) gives us 

1Ptt - 1Pxx = 41/Juv · 

(2.3) 

(2.4) 

(2.5) 

Finally, substituting (2.5) into (1.1) gives us SGE in characteristic coordi­

nates 

41/Juv = - sin 1/;. 
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2.2 Backlund's transformation 

2.2.1 The basic idea 

Backlund transformation for SGE is the first-order system of partial differ­

ential equation given by 

where 'l/J='l/J(u, v), rJ=rJ(u, v), and A #0 is an arbitrary parameter. From a 

known solution of SGE, it is possible to generate a new solution through the 

Backlund transformation. This is done by starting with a known solution rJ 

of SGE and solving for 'ljJ in (2.6). Then 'ljJ must be a new solution of SGE. 

Theorem 2.2.1. Let 'ljJ and rJ be solutions to {2.6). Then 'ljJ and r7 both 

satisfy SGE. 

Proof. Differentiating the first equation in (2.6) with respect to v, we obtain 

(2.7) 

Now substitute the term 'l/Jv - rJv with its value in (2.6) to obtain 

(2.8) 
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Differentiating the second equation in (2.6) with respect to u gives us 

1 (1 1 ) 'l/Jvu - T/vu = 2A COS 2'l/J + fl ( ?/Ju + T/u) · (2.9) 

Now substitute the term ?/Ju+ T/u with its value in (2.6) to obtain 

(2.10) 

By adding (2.10) and (2.8), and using the addition law for sine, together with 

T/uv = T/vu and ?/Juv = ?/Jvu, we obtain 

2¢uv = -cos G¢) sin G¢). (2.11) 

Now using the double angle formula for sine, we obtain 

(2.12) 

Multiplying the last equation by 2, we finally arrive at 

4'l/Juv = - sin( ?jJ). (2.13) 

In similar fashion, subtracting (2.10) from (2.8) yields 

(2.14) 
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Multiplying the last equation by 2 then gives us 

4rJuv = - sin(77). (2.15) 

Equations (2.13) and (2.15) show that 1/; and 77 are both solutions to SGE as 

claimed. D 

2.2.2 Kink-antikink solutions 

The Backlund transformation for SGE is given by (2.6). If 77 is a solution of 

SG E, and 1/; and 77 satisfy Backlund Transformation, then 1/; is also a solution 

of SGE. We now show how this can be used to generate new solutions from 

known ones. 

Let's start with the trivial solution 77( u, v) = 0. Then, on temporarily 

setting ii = Xu, v = v / .X, the pair of equations in (2.6) reduce to 

(2.16) 

Adding these equations yields 

(2.17) 

which has the general solution 

1/J = f(u - v) = f(y), (2.18) 
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- 10 - 5 0 5 10 

Figure 2.1: Representation of the kink (blue) and antikink (red) solutions. 

where y = ii - iJ. 

Now 7Pfi = (df /dy)(dy/du) = (df /dy) and 1Pv = -df /dy, so that, on 

subtracting the second equation in (2.16) from the first equation, we obtain 

2df = -2sin (L). 
dy 2 

(2.19) 

Integrating (2.19) yields 

In tan ( i) = y + constant. (2.20) 
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Solving for f and changing back to our original variables gives us 

¢( u, v) = 4 arctan ( A exp ( ,,\( u - v / ,,\ 2))). (2.21) 

Equation (2.21) gives the kink-anitkink solutions of SGE in characteristic 

coordinates, where A= e-xo/../f=c'I and,,\= ±~y'(l - c)/(1 + c). We substi­

tute (2.1) into (2.21). The solution of SGE take the form[l] 

¢(x, t) = 4 arctan exp ± . ( ( x - x0 - ct) ) 
y'l - c2 

(2.22) 

This represents a localized solitary wave, travelling at a constant speed lcl < 

1. The ± signs correspond to the kink and antikink solutions, respectively, 

which are plotted in figure 2.1. 

2.2.3 Breather solutions 

The sine-Gordon equation also has a family of soliton solutions known as the 

standing breather. A breather is a nonlinear mode that is localized in space 

and oscillates with time. These can be generated by applying the Backlund 

transformation to the kink-antiknk solutions. The resulting solution has the 

form [3] 

,,t,( ) _ 4 ( 2 sin(t/ v'5) ) 
'f/ x, t - arctan . ~ . 

cosh(2x/ v 5) 
(2.23) 
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\ /1 

- 60 - 40\ -20 I o ~ 20 40 60 

- 20 - 10 10 20 
- I 

- 2 

- 3 

(a) (b) 

Figur 2.2: The Breather solution, (a) Stander Breather, calculat d for thr e 
different tim s t = 1 (r d curve) , t = 2 (gr n curv ), t = 8 (blue urv , 
and (b) Th moving Breather, calculated for three different times t = - 60 
(r d curv ), t = - 25 (green curve) t = 20 (blue curve) , where c = 0.5 and 
µ=7r/4. 
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The moving breather solution has the form [4] 

( 
cos('y cos µ(t - xc)) ) 

'l/J(x, t) = 4 arctan tanµ h( . ( )) , 
cos 1smµ x - ct 

(2.24) 

where 1 = 1 / J l - c2 , µ is a parameter that determines the size and frequency 

of the pulse and c is the speed of the pulse. We will use this solution as initial 

data for simulations in Chapter 3. 

15 



Chapter 3 

The Modified sine-Gordon 

Equation 

We are interested in studying numerical solutions of a MSGE that is similar 

to SGE 

'l/Jtt - 'l/Jxx = F( 'lp ). (3.1) 

We are particularly interested in the case 

F ( 'l/J) = - V 'ljJ - sin 'lj;, (3.2) 

where 'lj; = 'ljJ(x, t), and V = V(x) is a potential independent of time. This 

class of MSGEs is similar to the equations of motion of self-interacting scalar 

fields about black holes. We note that there are no known analytic solution 

to the MSGE. In this chapter we explore a numerical method for solving the 
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MSGE. 

3.1 The modified sine-Gordon equation and 

its discretization 

We now describe a method to discretize MSGE in characteristic coordinates 

(u, v). In characteristic coordinates MSGE has the form 

(3.3) 

We use 'l/Js, 'l/JE, 'l/Jw, and 'l/JN to denote 'l/Js = 'l/J(ui, vi), 'l/Jw = 'lf-1(ui + h, vi), 

lj_,E = 'l/J(ui, vi+ h) 'l/JN = 'l/J(ui + h, vi+ h), respectively. Here, his the step 

size. 

Our goal is to find a discrete method that allows us to compute 'ljJ N from 

'l/Js, 'V--'E, and 'l/Jw. Given the stencil, we find a discrete (approximate) solution 

as follows. Choose initial conditions along the lower diagonal edges ( u, v) in 

Figure 3.l(a), and then use the stencil to generate an approximation to 'l/J in 

the whole domain. 

3.1.1 Derivation of the stencil 

We first derive an integral form of MSGE. Let the centre of a cell Q in 

computational grid have coordinates !v!(u0, v0). Then 'l/Js = 1/J(u - ~' v - ~), 

'l/Jw = 'l/J(u- ~' v + ~), 'l/JE = 'l/J(u+ ~' v- ~) and 'l/JN = 'lf;(u+ ~' v+ ~), where 

17 



- .t 

(a) (b) 

Figure 3.1: (a) Computation grid in the domain D, and (b) Dcell. 

h is the step size. Now integrate (3.3) over the cell Q to obtain 

J l 1/Juvdudv = ~ J l F(?p)dudv. (3.4) 

By Fubini's theorem, the left-hand side of (3.4) is 

Evaluating the right hand side of (3.5), we get 

18 



Thus (3.6) can be rewritten as 

1/JN -1/JE -1/Jw + 1/Js = ~ j h F('lf;)dudv. (3.7) 

Equation (3.7) is the integral form of (3.3). To approximate the right-hand 

side of (3.7), let's define G(u,v) = F('l/J(u,v)). We write GM= G(u,v) for 

the value of G at the centre of Q. Similarly, we define Gt1 = ( 8:;;) lcuo,vo) and 

G!1 = ( ~~) l(uo,vo)· Then the Taylor series expansion for G about M to first 

order is 

G(u + s, v + t) =GM+ sG~1 + tGt1 + O(h2
). (3.8) 

Plugging s = h/2, t = -h/2 into (3.8) then yields 

(3.9) 

On the other hand, plugging s = -h/2, t = h/2 into (3.8) gives 

(3.10) 

The average of (3.9) and (3.10) is then seen to be 

(3.11) 
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Hence 

j l G(s, t)dsdt = j l (GM+ sG!1 + tG!1 + O(h2
)) dsdt. (3.12) 

Since QM, G!1 and G~ are constant, we have 

j l G(s, t)dsdt = GM j l dsdt + G!
1 j l sdsdt + G!1 j l tdsdt 

+ O(h2
) j l ds dt. (3.13) 

We now observe that 

j l dsdt = h2
, and/ l sdsdt = j l tdsdt = 0, (3.14) 

so 

j l G(s, t)dsdt = GMh2 + O(h4). (3.15) 

Substituting (3.11) into (3.15), we get 

which simplifies to 

fl G(s,t)dsdt= ~\GE+GW)+O(h4). (3.17) 

20 



Noting that GE= F('l/JE) and aw= F('l/Jw ), this becomes 

f k F('lp)dudv = ~
2 

(F('I/Je) + F('I/Jw)) + O(h4
). (3.18) 

Finally substituting {3.18) into the right-hand side of (3.7) yields 

h2 
'l/JN = 'l/JE + 'l/Jw - 'l/Js + 8 (F('l/JE) + F('l/Jw )) + O(h4

). (3.19) 

This is the stencil we will use for simulations. Note that the one-step error 

3.2 Comparing numerical and analytic results 

for the SGE 

We now use the method developed in the previous section to obtain a numer­

ical approximation to a known solution of the SGE. We then compare the 

numerical approximation to the known solution by computing the root mean 

square error (RMSE) of their difference. This allows us to see how well the 

approximation method works. There are two types of error are important 

to identify: local error and global error. In practice, we are only concerned 

with the global (cumulative) error. The global discretization error is given 

21 



by (RMSE) £ of '¢num - '¢exact, which is defined to be 

(3.20) 

where the sum is taken over all cells n, 'l/Jnum is the numerical solution and 

'¢exact is the exact solution, evaluated on the competition grid. We now verify 

empirically that £ = O(h2 ) for F('¢) = - sin('¢), we then explain why this 

is the case. 

We construct a numerical approximation of the moving breather as fol­

lows: 

1. Start with initial conditions for the exact solution of moving breather 

of SGE in (x, t) coordinates. 

2. Convert the initial conditions to characteristic coordinates ( u, v). 

3. Solve for 1/,,(u, v) numerically using the stencil with F('¢) = -sin('¢). 

4. The analytic solution is known in this case, so we can explicitly calcu­

late the global error £ between the numerical solution and the exact 

solution. 

Figure 3.2 is a log-log plot of the computed RMSE for various choices of 

the step size h. We fix the length of the sides of the computation grid to 

be L so that h = L / N, where N is the number of steps in each direction. 

The slope of this plot is approximately - 2, indicating that the global error 

is O(h2
). We expect the global error£ to obey 

22 



4. X 10· 4 

2. X J0 · 4 

f. X 10· 4 

global error S. x 10
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100 200 300 400 500 
number of steps 

Figur 3.2: Log-log plot of global rror £ as a function of N. 
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£ ~ (number of steps) x (one-step error for each step) 

= N 2 
X O(h4

) 

= 0 G2) X O(h4
) = O(h2). 

This agrees with our empirical result. 

(3.21) 

3.3 Numerical investigations of the MSGE 

Now we construct a numerical approximation of the modified sine-Gordon 

Equation. First, let us define the inverted Poschl-Teller potential by V(x) = 

sech(/3x) where /3 is a parameter. The potential barrier V(x) has exponential 

decay with a "small footprint" for large /3 and a "large footprint" for small 

/3, as shown in Figure 3.3. 

We carry out our experiments as follows: 

1. Start with initial conditions for the exact solution of the moving breather 

of SGE in (x, t) coordinates. 

2. Convert the initial conditions to characteristic coordinates ( u, v). 

3. Solve numerically using the stencil (3.19) with F('l/J) = -V'l/J - sin 'l/J . 

We set the initial position at x 0 « 0, so that the initial wave form is 

far away from V(x), which is centred at 0. Observe that, for fixed t, 'l/J(x, t) 

essentially compact support, so it does not see the potential barrier V ( x) for 

small values oft. Thus, the waveform 'l/J(x, t) starts to evolve according SGE. 
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- 20 - 10 10 20 - 20 -10 10 20 
X 

(a) ( ) 

Figure 3.3: The potential barrier V(x) plots, (a) for large /3 = 5, and (b) 
small values of /3 = 0.5. 

Th r sulting volution of the initial wave form for f3 = 5 and x0 = -50 is 

hown for various values of t in Figure 3.4. We see that 'l/; begins to mov 

as it does in SGE in (a). In (b) and (c) it interacts with the potential V(x). 

Then in ( d) , we see that has split into two wave of roughly equal ize 

moving opposit dir ctions. It appears that half the wave has been reflected 

by the pot ntial V ( x) and the other half has been transmitt d. Th lin ar 

and log-linear plot of the reflected wave as a function of v is shown in Figur 

3.5. 

Wh n w d crease /3 to /3 = 0.5, making V(x) wider , we see similar 

behaviour in Figure 3.6 except that most of the wave is reflect d this time. 

Th linear and log-linear plot of the reflected wave as a function of v is 

25 
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Figur 3.4: Evolution of initial wav form for f3 = 5 and x0 = - 50 at v ri u 
time t. 
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Figure 3.5: For /3 = 5 and x 0 = -50: (a) plot reflected wave, and (b) 
log-linear plot of the reflected wave. 
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shown in Figure 3. 7. This shows a pattern of late time exponential damping 

in the waveform in the case of the wide potential (with /3 = 0.5). Damping 

of the waveform is present in the case of the narrow potential (/3 = 5) as 

well, but it does not appear to be exponential. The reflected wave forms for 

both the broad and narrow potentials seem to show the presence of multiple 

frequencies. They also show a distinct "forward pulse" before the main part 

of the wave. This forward pulse is more pronounced for the wide potential. 

3.4 The rate of convergence of a numerical 

solutions to the true solution 

In absence of the true solution it is still possible to test the rate of convergence 

of numerical solutions to the true solution. This is done by using the stencil 

(3.19) twice: once with a stepsize 2h and once with stepsize h. The numeric 

solution generated when the stepsize is 2h will be denoted by 'l/J}~h) = 'l/J(u, v)+ 

O(h2). Similarly, when the stepsize is h the numeric solution is labelled as 

'l/J~~.1j = 'l/J(u, v) + O(h2
), where u = u0 + 2ih, v = v0 + 2jh, and i,j = 

0, 1, .... N /2. The norm between the numerical solutions with stepsize hand 

2h given by 

( 

N/2 ) 1/2 
£ - 1 (2h) - (h) 2 

- ( ./Y. l / ~ ( 1/-';,j 1P2i,2j) 
2 + i,J=O 

(3.22) 

where N /2 is the number of steps in each direction. 

We now show that £ is of order O(h2
). First, note that by actual error 
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on th amputation grid 

(3.23) 

but (N/2) 2 = O(h- 2
) henc O(h- 2)0(h4 ) = O(h2 ) , which yields 

(3.24) 

Similarly 

(3.25) 
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where 1/J( u, v) is the exact solution. Now subtract (3.25) from (3.24) to obtain 

(3.26) 

noting that 

(3.27) 

Therefore 
N/2 

L ('l/Ji,~h) - 'l/)~~~) 2 = O(h-2)0(h4) = O(h2
), (3.28) 

i,j=O 

we finally arrive at 

(3.29) 

Equation(3.29) shows that the rate of convergence statistic of E is of 

order O(h2). Figure 3.8 is a log-log plot of the rate of convergence for various 

choices of the step size h. We fix the length of the sides of the computation 

grid to be L so that h = L / N. The slope of this plot is approximately 2, 

indicating that the rate of convergence is of order O(h2). 

3.5 Summary 

In this chapter, we derived an O(h4 ) numerical approximation scheme in 

Section 3.1 that applies to a class of equations similar to SGE. We then 
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compar d a known solution to its numerical approximation in Section 3.2 to 

mpiri all te t th ~ ac ura y of the method. In section 3.3, we engaged in 

num ri 1 ud of th b havior of a localized trav ling wave ( the moving 

breath r) as it passed through the inverted Poschl-Teller potential. We found 

h t th pot ntial barrier caused part of the wave to be refl cted while th r t 

wa transmitted through th barrier. Log-linear plots show d a pattern of 

xponential damping in th wave form in the ca of th wid potential ( with 

f3 = 0.5) , and non- xponential damping for the narrow potential ((3 = 5). It 

would b interesting to dev lop an analytic und rstanding of th se late tim 

wav tails. Finally, in section 3.4 we show d the th rate of conv rg n of 

th m thod is O(h2
). 
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Chapter 4 

Conclusions 

After reviewing essential aspects of the sine-Gordon equation and its appli­

cations to physics, we introduced a modified form of the equation that is 

relevant to the study of black holes. 

We then derived an 0( h4
) numerical method for approximating the so­

lutions of the modified sine-Gordan equation and showed that it leads to 

an O(h2 ) global error. Empirical evidence of these accuracy claims was ob­

tained by comparing an exact solution to the sine-Gordon equation with its 

numerical approximation. 

We then we used the method to investigate the effect of adding a potential 

term to SGE. We found that part of a traveling wave form was transmitted 

through the potential barrier and part of it was reflected. The amount that 

was reflected depended on the shape of the potential. We then verified the 

method converge with a rate O(h2). 
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In conclusion, we have introduced a numerical method for solving non­

linear wave equations of a certain type. Its use in the numerical investigation 

of solutions to such equations as the modified sine-Gordon equation should 

provide new insight into black hole dynamics. 
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