
Thread-Based, Region-Based

Automatic Memory Management

by

Tristan M. Basa

M.S. Comp.Sci., UP Diliman, 2000
B CS, UP Diliman, 1995

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Masters of Science in Computer Science

In the Graduate Academic Unit of Faculty of Computer Science

Supervisor(s): Gerhard W. Dueck, Ph.D., Faculty of Computer Science
Kenneth B. Kent Ph.D., Faculty of Computer Science

Examining Board: Suprio Ray, Ph.D., Faculty of Computer Science, Chair
David Bremner, Ph.D., Faculty of Compute Science

This thesis is accepted

Dean of Graduate Studies

THE UNIVERSITY OF NEW BRUNSWICK

May, 2017

c©Tristan M. Basa, 2017

Abstract

Automatic memory management offers programmers an alternative to un-

managed languages. It unburdens some of the low-level control from human

hands. However, this comes at the price of performance. Virtual machines

using automatic memory management are prone to long system pause times

that degrade the overall performance of the system. Often, the culprit is

a mismatch between the nature of the application and the chosen garbage

collection algorithm. There are algorithms that already address this issue,

such as the Balanced Garbage Collection (BGC) by IBM, which uses region-

based memory management. Region-based memory management introduces

the flexibility of being able to select areas of the heap for collection that will

potentially result in the best “return-on-investment.”

With the advent of multicore processors, we extend this approach to take

advantage of the potential concurrency that can happen among threads dur-

ing garbage collection. By assigning entire regions to a thread, we are able

to select a set of regions that belong to only one thread thereby potentially

ii

allowing other threads to continue execution during garbage collection. We

also define thread relationships that will identify other threads that may have

to be stopped as well when collection is being done on a given thread.

iii

Dedication

To my Lola Puring...

iv

Acknowledgements

I should like to thank my supervisors Gerhard W. Dueck and Kenneth B.

Kent for their continued guidance and support without which I would not be

able to finish this thesis.

I should also like to thank Dmitri Pivkine from IBM Ottawa for his impor-

tant input during our weekly conference calls and prompt emails.

My heartfelt thanks goes to my parents Augusto and Luz Basa who have

always been my emotional safety net, not to mention my brothers Ogie, Ra-

mon, Charles, and my sister Ambers who have sustained me in ways no other

people can.

Thank you for the faculty and staff especially to Jodi O’Neil of the Faculty

of Computer Science of the University of New Brunswick for all the admin-

istrative help that they have afforded me.

v

I should also like to thank Md. Mazder Rahman for not being only a col-

league but also a friend.

My gratitude also goes to my other colleagues in the lab for all their con-

structive criticisms given during our weekly seminars and chance meetings

in the hallways.

Last but not the least, thank you to all my Filipino friends here in Canada

and in the Philippines who have helped bring Fredericton closer to home.

vi

Table of Contents

Abstract ii

Dedication iv

Acknowledgments v

Table of Contents vii

List of Tables xi

List of Figures xiii

1 Introduction 1

2 Background 4

2.1 Garbage Collection . 4

2.2 Garbage Collection Policies 5

2.2.1 Mark-Sweep . 6

2.2.2 Reference Counting . 7

2.2.3 Generational Garbage Collection 8

vii

2.2.4 Region-based Garbage Collection 11

2.3 Escaping Objects . 13

2.4 GC Performance Metrics . 15

2.5 GarCoSim: A GC Simulator 15

3 Methodology 17

3.1 Allocation . 17

3.2 Collection Set Criteria . 19

3.3 Collection . 20

3.4 Eden Set Size . 20

3.5 Performance Metrics . 20

3.5.1 GC Effort . 22

3.5.2 GC Return . 23

4 Experiments 25

4.1 Experimental Setup . 25

4.2 Input . 26

4.2.1 Zombie Objects . 28

4.2.2 Suspended Thread Set 29

4.3 Experimental Results . 30

4.3.0.1 MyThreads Experiments 45

5 Conclusion and Future Work 51

Bibliography 59

viii

A Benchmark Descriptions 60

A.1 Dacapo 9.12 . 60

A.1.1 Aurora . 60

A.1.2 Batik . 60

A.1.3 Fop . 61

A.1.4 Lusearch . 61

A.1.5 Luindex . 61

A.1.6 Pmd . 61

A.1.7 Jython . 61

A.1.8 Xalan . 61

A.2 SPECjvm2008 . 62

A.2.1 Compiler.compiler . 62

A.2.2 Compiler.sunflow . 62

A.2.3 Serial . 62

A.2.4 Sunflow . 63

A.2.5 Xml.transform . 63

A.3 MyThreads . 65

B Trace File Format 66

B.1 Allocation . 66

B.2 Reference Operation . 68

B.3 Class Operation . 68

B.4 Store Access . 69

ix

B.5 Read Access . 71

B.6 Rootset Dump . 71

C Source Code 73

Vita

x

List of Tables

4.1 Average percentage of related threads. 31

4.2 Workload distribution of threads per benchmark. Work load

is defined as the number of operations performed by a thread

in the trace file. 32

4.3 Number of garbage collections. The last column is the per-

centage equivalent of the ratio between the second and third

columns. 34

4.4 Number of regions collected. 35

4.5 Number of objects copied. 36

4.6 Bytes copied. 37

4.7 Remset updates. The value na denotes not applicable. 38

4.8 Object reference updates. 39

4.9 Collection set remset additions. 40

4.10 Average garbage collection time in seconds. 41

4.11 Simulation times in seconds. 41

4.12 Garbage collection effort. 43

4.13 Bytes freed. 44

xi

4.14 Net regions freed. 45

4.15 Allocation distribution among threads for MyThreads bench-

mark. 47

4.16 Suspended thread set GC for Table 4.15. 48

xii

List of Figures

2.1 Remembered sets contain pointers that point to objects. . . . 11

2.2 An example of escaping objects: Object 3 escapes to thread B. 14

3.1 Object-splitting. 19

4.1 Number of garbage collections. 34

4.2 Number of regions collected. 35

4.3 Number of objects copied. 36

4.4 Bytes copied. 37

4.5 Remset updates. 38

4.6 Object reference updates. 39

4.7 Collection set remset additions 40

4.8 Average garbage collection time. 42

4.9 Simulation times in seconds. 42

4.10 Garbage collection effort. 44

4.11 Bytes freed. 45

4.12 Net regions freed. 46

xiii

4.13 MyThreads is a Java program with five threads performing

thousands of allocations concurrently. The x-axis shows the

number of operation-steps while the y-axis shows the thread

numbers. 49

xiv

Chapter 1

Introduction

There has been a renewed interest in virtual machines (VM) since the late

1990s especially in the desktop environment [1]. In a VM that makes use

of automated memory management (MM) such as the Java Virtual Machine

(JVM), an efficient garbage collection (GC) algorithm is key to good over-

all performance. One of the main causes of performance degradation in a

VM is the long system pause time. A long system pause time is caused

mainly by the stop-the-world approach to carry out the garbage collection.

On a multiprocessor machine, a stop-the-world approach means suspending

the execution of all (mutator) threads until the garbage collection is finished

[2]. To overcome such a concern, the system pause times can be reduced by

minimizing the number of threads to be stopped during the GC. In an ideal

scenario, a single thread will be stopped to avoid stopping other threads.

Allocation and GC are performed thread-local.

1

Some approaches make use of region-based memory management, which of-

fers a flexible way of managing the memory. The main focus of this research

is in the allocation and GC of a specific set of regions belonging to a single

thread. When regions are assigned to threads, allocations and collections can

be done thread-locally. However, there are thread dependencies that often

prevent one thread from being collected independently, such as the presence

of escaping objects. If an object is referenced by another object from an-

other thread, it is considered to have escaped. Escaping objects can be as

high as 42% of all allocated objects (SPECjbb2005)[3]. They are discussed

in more detail in the following sections. This study aims to investigate how

thread-based, region-based, memory management can potentially minimize

the number of threads to stop during collection.

There exist algorithms that make use of region-based memory management,

such as IBM’s Balanced Garbage collection policy [4]. However, the criteria

for the selection of regions in the collection set is based on amortizing the

pause times across the number of GCs that will be triggered. The aim of

thread-based, region-based, memory management on the other hand, is to

minimize the number of threads that would have to be stopped during a GC.

As will be discussed later, this does not necessarily translate into shorter

simulation time due to increased instances of garbage collections.

Chapter 2 discusses some background literature while Chapter 3 presents

2

the approach to be taken and details on how thread-based, region-based,

memory management can be implemented. Chapter 4 discusses the setup

for the experiments as well as the results. Finally, Chapter 5 summarizes the

results and gives insights on what could be done next as an extension of this

research.

3

Chapter 2

Background

2.1 Garbage Collection

Prior to managed languages, programmers had to explicitly deallocate unused

memory. However, this approach is prone to human errors. By unburdening

some of the low-level functionalities from human control, we minimize these

kinds of errors. Managed languages give developers several advantages such

as increased security, flexibility, fewer lines of code, safer code, and lower cost

of deployment. Modern programming languages employ dynamic memory

allocation wherein objects are allocated on a heap. Heap allocation, which

can allow programmers to [2]:

• dynamically choose the size of new objects;

• define and use recursive data structures;

4

• return newly created objects to the parent procedure;

• return a function as a result of another function.

Mutator threads, or application threads, gain access to objects on the heap

via rootsets. A rootset is a set of references to a Java Virtual Machine (JVM)

thread’s stack and registers during garbage collection time [5].

During a program’s run, some objects may no longer be needed and thus lose

their reachability from any rootset. These objects are considered garbage and

as their number increases, it can lead to out of memory errors. In order to

avoid this scenario, garbage collection is needed to reclaim memory occupied

by these objects.

2.2 Garbage Collection Policies

There exist several GC algorithms or policies offering flexibility and added

capabilities to a managed runtime. Each policy has its own advantages and

disadvantages. Depending on the specific goal of the application, a policy

is usually chosen such that it will result in the best performance for the

system. For example, interactive applications require fast feedback. In this

case, a policy with a short collection time is more appropriate. The following

subsections present some of the widely used garbage collection policies.

5

2.2.1 Mark-Sweep

The Mark-Sweep algorithm [6] is one of the four fundamental approaches to

Garbage Collection. It is based on the concept of pointer reachability and

considered an indirect collection algorithm since it does not detect garbage

objects directly. Instead it identifies live objects and assumes everything else

is garbage. An example of a direct collection called reference counting is

discussed in the next subsection.

There are two basic phases in the Mark-Sweep algorithm: the marking phase

and the sweeping phase. The marking phase labels the live objects while

the sweeping phase frees up memory space occupied by objects that were

left unmarked. The marking phase starts by searching for objects from the

rootsets of threads. A rootset of a thread contains pointers to objects initially

allocated by a thread. By recursively traversing the object pointers contained

in the subsequent objects, objects that are reachable from the rootset can be

marked and be defined as the set of live objects. Unmarked objects are then

freed up in the sweeping phase after which, all live objects are unmarked

again for the next collection.

Mark-Sweep-Compact is a variation of this algorithm wherein compaction is

performed on all live objects after the sweeping phase. Mark-Sweep-Compact

is the default GC policy for the IBM’s JVM [7].

6

2.2.2 Reference Counting

Reference counting [8] is an example of a direct collection algorithm since it

operates on the objects directly as the number of references to the objects

is increased and decreased. Live objects are determined if the number of

incoming references to an object is greater than zero. This is tracked by a

reference count. The reference count is stored as an additional slot in the

object’s header. Objects whose reference count drops to zero are considered

garbage and therefore subject to collection. An issue arises when there are

cyclic references, also known as garbage cycles. These are objects that refer-

ence each other, therefore maintaining a reference count greater than zero.

However, none of these objects are reachable from any rootset and therefore

should be considered garbage. As the number of cycles increase, the memory

footprint increases since objects in the cycles are never freed resulting in less

and less available memory.

A simple approach to resolve garbage cycles is to periodically run a tracing

collection such as the mark-sweep algorithm discussed in the previous subsec-

tion whenever the heap runs low or runs out. Some garbage objects are not

part of any garbage cycles and therefore can be caught by reference counting

alone. A key observation however is that garbage cycles happen only during

reference deletion where the reference count remains greater than zero. This

implies that entire object-graph tracing is unnecessary and therefore can be

made more efficient. Based on this observation, partial tracing can be done

on the transitive closure of the subgraph of the object whose reference was

7

recently deleted but still has reference count greater than zero. An algorithm

that takes advantage of this observation and the most widely-adopted algo-

rithm for handling cycles is called trial deletion. Attention is only focused

on the subgraph that might have created a cycle [9][10][11].

Another approach makes use of an algorithm called The Recycler that sup-

ports concurrent cyclic reference counting [12][9]. It operates in three phases:

1. Identify objects belonging to a cycle, decrementing their reference count

and coloring them grey.

2. Check the reference counts of nodes in these cycles. If an object’s

reference count is greater than zero, recoloring live grey objects to

black, and other grey objects to white.

3. Remaining members of the subgraph that are still colored white are

reclaimed.

This policy is useful in reclaiming some memory when some parts of the

memory are unavailable, such as in distributed systems [13].

2.2.3 Generational Garbage Collection

Garbage collection is most efficient when there are few live objects in memory.

A few observations however, have led to some hypotheses in regards to an

object’s lifetime [14]. Some observations have become the motivation for

another kind of garbage collection policy: the generational garbage collection.

8

One of these observations is that garbage collection is most efficient when

there are fewer live objects in memory. The fewer live objects the more

memory available for allocation and the more memory available, the fewer

collections are required. It is less efficient when long-lived objects are checked

by every GC. Another observation that has implications on performance is

that most objects tend to die young, which means they should be collected

more frequently, and long-lived objects should be collected less frequently.

Generational GC takes its cue from these observations by dividing the heap

into generations or age groups of the objects. Newly created objects are allo-

cated on the young or nursery generation. Often, an object’s age is measured

by the number of collection cycles it has survived. After a certain number

of GC cycles, a surviving object is moved to the next older generation. This

process is applied for every generation except the oldest.

The youngest generation is collected most often and the older generations are

collected less often. The older the generation, the less often it is collected.

The ratio of how often collection is done across the generations can be fine-

tuned, and so can the size of the each generation. By controlling the size of

a generation, we can potentially control the pause times for the collection of

that particular generation.

At some point, collection on the young generation will be insufficient to free

enough memory as garbage in the older generation starts to accumulate. It is

therefore necessary to occasionally perform collection on the older generations

as well. Although this approach improves throughput by avoiding repeated

9

processing of long-lived objects, it comes at a price, that is, it incurs an

overhead by keeping track of inter-generational pointers called remembered

sets (remset). A remembered set is associated per generation. They contain

pointers to objects in another generation that have pointers to objects in

the current generation. An example is illustrated in Figure 2.1. The write

barrier code sequence is responsible for determining if a pointer store needs

to be remembered or not, and if so, updates the remembered set accordingly

[15][16].

Generational collectors should be fine-tuned such that the benefits of using

them will outweigh the overhead incurred. There are no strict rules when

it comes to fine-tuning generational GC’s, so much so that it is sometimes

considered a subtle art. Some parameters include the size of the nursery

generation, how often should the nursery be collected in relation to older

generations, the aging mechanism for objects, and promotion policies for

objects.

This policy is preferred whenever the application creates many short-lived

objects such as in transaction-based applications wherein objects die after the

transaction is completed. Another preferred usage of this policy is whenever

an application results in a highly fragmented heap. Moving objects from an

often-collected generation to a lesser collected generation tend to minimize

fragmentation.

10

Figure 2.1: Remembered sets contain pointers that point to objects.

2.2.4 Region-based Garbage Collection

The concept of region-based memory management started out as a purely

theoretical concept which eventually led to a new memory management tech-

nique that is more practical in terms of space and predictability [17].

By splitting the heap into smaller fragments, management becomes more

flexible since each fragment can be dealt with under a different policy or

mechanism [18].

Region-based memory management is a type of memory management wherein

allocated objects are assigned to a region, sometimes called arena, zone, area,

or memory context. The regions can be thread-based or longevity-based

depending on the purpose. They facilitate allocation and de-allocation with

low overhead since deallocation involves merely bumping pointers [19]. Each

region marks the area of memory within the region that points to the starting

11

address of its free space. The size of the free space can be calculated from

this marker up to the end address of the region. Allocation is done by moving

this free space pointer up according to the size of the object being allocated.

If the object size is greater than the regions size, objects can be broken down

into smaller chunks to be distributed across other regions. If the whole region

is freed, such as in the case of IBM’s Balanced GC, deallocation is a matter

of moving the free space pointer back to the starting address of the region,

and returning the region to the free list.

Region-based MM has been used to improve memory usage in programming

languages such as C [20]. By providing programmers low-level control in C,

it has become prone to safety violations such as buffer overruns, dangling-

pointer dereferences, and space leaks. These can be avoided using automatic

memory management.

With region-based MM, automatic memory management can be implemented

in such a way that we can choose areas of the heap that will result in a

more “balanced” collection time. An example of a region-based memory

management system that explores this type of collection policy is IBM’s

Balanced Garbage Collection (BGC) [4]. For better performance, a certain

number of regions are targeted at the start of the virtual machine. Depending

on the implementation, some systems can also impose a minimum region size.

The target number of regions is between 1,024 and 2,048 [4]. Some regions,

called the eden set, are assigned for allocations. In Balanced GC, the recom-

mended size of the eden set is one-fourth of the current heap size. Collection

12

is done on a set of regions called the collection set. A collection set is the set

of regions that meet some criteria for collection. These criteria include the

following:

• Eden Regions – all regions in the eden space

• Fragmentaion – highly fragmented regions

• Mortality Rate – objects in the region have a high mortality rate

A global marking phase (GMP) runs in the background between collections to

help improve performance of a partial GC. During tight memory conditions,

a global collection is invoked [4]. In the event system performance degrades,

a global garbage collection is necessary such that essentially, a stop-the-world

GC is in effect.

This type of garbage collection policy is suggested for systems with large

memory (at least 4GB). It is also preferred for systems where balanced

response-time is important.

2.3 Escaping Objects

The definition of escaping objects depends on its context. According to Choi

et. al. [21], an object’s escape state can be one of the following:

• GlobalEscape – An object is shared between methods and threads. For

example, an object stored in a static field, stored in a field of an escaped

object, or, returned as the result of the current method.

13

• ArgEscape – An object is passed as an argument to a method but does

not globally escape during the call.

• NoEscape – A scalar replaceable object, meaning its allocation could

be removed from generated code.

In this study, we limit the focus on escaping objects shared between threads.

This can be identified by finding thread dependencies. Thread dependency

based on escaping objects is illustrated in Figure 2.2.

Figure 2.2: An example of escaping objects: Object 3 escapes to thread B.

14

2.4 GC Performance Metrics

There are several metrics used in evaluating the performance of a garbage

collection algorithm [22]. Some of them include:

• Throughput – percentage of the summed CPU running time across

threads (not including garbage collection).

• Garbage collection overhead – percentage of cumulative time spent

on garbage collection.

• Pause time – time (wall clock) spent while performing a garbage

collection.

• Frequency of collection – how often does garbage collection occur

relative to overall running time of the application.

• Footprint – measure of memory consumption such as the heap.

• Promptness – time it takes for garbage memory to be reclaimed.

2.5 GarCoSim : A GC Simulator

Performance of a garbage collection algorithm depends largely on the require-

ments of an application. Thus, evaluating its performance entails simulating

all the basic memory management operations in a virtual machine [23]. For

simulation purposes, an application takes as input a trace file that contains a

15

series of pre-recorded memory management operations in the JVM. The trace

files available have been feature-extracted and can be chosen based on these

features. A synthetic trace file generator can also be used to generate trace

files based on specific parameters [24]. From this simulation, we can gather

statistics which can be used for data analysis and evaluation. Specifically, we

can use these statistics to determine how many threads need to suspend dur-

ing a collection and compare this with the performance of a non-region-based

version of collectors such as the traditional mark and sweep.

Implementation of added features was done on top of an existing garbage

collector simulator called GarCoSim [23]. In terms of allocation, it currently

uses the whole heap for allocation or half of it depending on the garbage pol-

icy selected. In implementing the thread-based, region-based, GC, the whole

heap needs to be divided into fixed, equal-sized regions wherein each region

can be assigned to a thread. Modifications were specifically implemented in

the Balanced Garbage Collection and RegionBased Allocation modules.

The proposed thread-based GC builds on top of the above concepts and is

further discussed in the following chapter.

16

Chapter 3

Methodology

Three key areas were identified where the thread-based GC is to be imple-

mented: object allocation, collection set criteria, and collection phase. These

key ideas were implemented on top of an existing simulator that uses a non-

region-based heap [23]. They are discussed in more detail in the following

sections.

3.1 Allocation

Some examples of region-based memory management (such as the IBM’s

Balanced GC policy), allocations are performed on a set of regions called the

eden set. The eden set comprises about 25% of the total regions. Different

threads can allocate in the same region as long as there is enough space. For

a thread-based, region-based allocation, the concept of thread ownership is

17

introduced wherein a thread is restricted to allocate only in regions that it

owns. Initially, regions are empty and are in a list called the free list. The

free list is composed of unclaimed regions that are entirely free for allocation.

Regions are assigned to the first thread that allocates in the region. Threads

that need an extra region for allocation can claim one from this list. Regions

are freed or put back in the free list whenever all objects in the region are

freed. Algorithmically, a thread follows these steps when allocating an object:

Algorithm 1 Thread-based Allocation

if requested space exists in thread’s eden set regions then
allocate object in a thread’s eden set region
return

else if thread’s eden set regions < prescribed % of its regions then
if there are free regions in the free list then

get a free region
assign region to the thread
allocate object in the region
add region to the eden set
return

end if
return allocation failure

end if

Objects that have sizes larger than the region size are split into several objects

with each object having a pointer to the next one. Figure 3.1 illustrates how

an object that is more than three times the size of a region will be divided

into four linked objects.

18

Figure 3.1: Object-splitting.

3.2 Collection Set Criteria

As discussed in Section 2.2.4, the Balanced GC policy imposes criteria per

region for selecting which regions to collect. For thread-based, region-based

GC, criteria is imposed on the thread for selecting which thread to include in

the collection set. In these experiments, the criteria was based on the thread

with the highest number of allocations. Regions in the eden set owned by

this thread are chosen for inclusion in the collection set.

19

3.3 Collection

Collection is triggered when there is not enough space in the eden set to

accommodate allocation of an object. Upon triggering a GC, we select the

thread with the highest allocation count and reset the counter to zero. The

thread with the highest allocation count has the highest chance of having

the most garbage. This is tracked by keeping an allocation count per thread.

The pseudo-code for this approach is given below1.

3.4 Eden Set Size

In the Balanced GC, the recommended eden set size is 25% of the total

regions. In thread-based GC, we arbitrarily set the eden size to 30% of the

regions from each thread.

3.5 Performance Metrics

Balanced and thread-based GCs both make use of region-based memory man-

agement. For this reason, we define a new set of metrics that focuses more

on the specific properties of a region-based memory management system.

Thread-based GC can be viewed as a variant of the Balanced GC. The main

difference berween the two approaches lies in the way they allocate objects

1In the worst case, we need as many free regions as there are in the collection set.
On average, fewer free regions are needed since many objects are usually freed and the
remaining live objects copied to the destination regions occupy less space.

20

Algorithm 2 Collection algorithm

T = thread with the highest allocation count
for all region Re in the eden set do

if thread owner of region Re = T then
add Re to collection set

end if
end for
for all live object Oc in the collection set do
Rd = a non-collection set region of T with enough space for Oc

if Rd = NULL then
Rd = get region from the free list

end if
copy object Oc to region Rd

end for
return regions in the collection set to the free list
for all objects with pointers to surviving objects in the collection set do

remove old pointer
add new pointer to the child’s new address

end for
for all remset entries pointing to objects in the collection set do

if object pointed to was garbage then
remove remset entry

else
remove remset entry
add object’s new address

end if
end for
allocation count(T) = 0

21

and the way the collection set is chosen. In this regard, some key properties

were identified that are relevant to a region-based management system such

as remset updates and number of regions freed. Two concepts were intro-

duced for measuring region-based GC performance: the GC Effort (GCe)

and the GC Return (GCr)
2.

3.5.1 GC Effort

Garbage collection is a major source of system pause times. For this reason,

it is important to measure the overhead involved in performing a GC [25].

Some factors that affect garbage collection are the following:

• Remset updates (ru) – these are changes made to the remset data

structure associated with each region. Remset update is a two-step

process: a deletion and an addition.

• Number of object reference updates (or) – measures how many

object references need to be updated after objects have been moved to

other regions. Similar to remset updates, this also involves a two-step

process.

• Remset addition (ra) – these are additions to the remsets of the

target regions after the copy phase3.

2Pause times are measured in terms of garbage collection times.
3We distinguish an update as a two-step process since the number of operations run

in the millions and the difference with a single step operation like an addition or deletion
can be a factor in the performance.

22

• Number of bytes copied (bc) – measures how much data was copied

during the collection. Depending on the implementation, the cost of

copying bytes can have a big impact on garbage collection performance.

Given these factors, we formulate a performance measure that takes into

account the number of steps performed. For example, updates are weighted

twice compared to a simple addition or deletion. The formula then takes

the weighted sum of all factors identified above. This measure is defined as

GCeffort and is given in the equation 3.1. This measure is intended to be

hardware agnostic.

GCe = 2(ru + or) + ra +
bc

8
(3.1)

Remset updates (ru) and object reference updates (or) have weights of two

since an update is a two-step process: a deletion and an addition. Bytes

copied (bc) is divided by eight since in a 64-bit machine, a memory operation

is performed eight bytes at a time.

3.5.2 GC Return

Another performance measure that can be taken into consideration is how

much resources was freed, or in this case, how much memory was reclaimed.

The amount of memory freed will have an impact on the number of collections

that can occur. Needless to say, more memory freed results in more memory

available for allocations hence, fewer instances of collections. The following

23

are some statistics that were taken into consideration to measure the GC

return:

• Bytes Freed – cumulative memory freed in terms of bytes from the

objects that were found to be garbage.

• Regions Freed – net freed regions. Total number of freed regions

minus regions consumed during GCs.

The number of bytes freed per GC can be used to find a lower bound on

the number of regions that can be freed per GC, which is equivalent to the

floor of the bytes freed divided by the region size. However, due to internal

fragmentation, this number can go upwards. In other words, if there are many

regions in the collection set that contain only a few objects, the chances of

these regions being freed is high, and thus, will result in more regions in the

free list.

The following chapter discusses in detail the experiments performed using

thread-based GC and the results obtained.

24

Chapter 4

Experiments

4.1 Experimental Setup

The benchmarks chosen for the experiments came from the DaCapo-9.12

benchmark suites [26] and SPECjvm2008 [27]. Trace files were generated

from some of the benchmarks [23]. The benchmarks chosen were those that

triggered at least one GC when the simulator was run with a region size of

512KB and a heap size of 512MB. The benchmarks were run in their entirety

for both the Balanced GC and thread-based GC. The factors considered in

these experiments include:

• Number of garbage collections – garbage collection is a major source of

system pauses and ideally should be minimized. However, this metric

does not take into account the length of the pauses.

• Size of the collections set – the number of regions to be collected. It

25

is a coarse-grained measure of the work to be undertaken per GC. The

size of the collection set affects all the other metrics considered.

• Number of objects copied – a coarse-grained measure of how much

memory was included in the collection set that is not garbage. It is a

measure of the efficiency of garbage collection.

• Number of bytes copied – a fine-grained measure of how much memory

was included in the collection set but is not garbage. Similar to the

number of objects copied, this is also a measure of the efficiency of

garbage collection.

• Number of remset updates (deletion/updates) – remset updates mea-

sure how many escaping objects were present in the collection set. Es-

caping objects are not considered garbage and become part of how

many objects are copied.

• Number of object reference updates – these are pointers from objects

outside the collection set. Similar to remset updates, it is a measure of

how much work was done during GC.

It is desirable to have the values for these metrics to be small.

4.2 Input

Memory management operations depend on the memory requirements of

different applications. Therefore, measuring performance of an automated

26

memory management can be achieved with the simulation of the MM oper-

ations that happen in an application. A real-time simulation is considered

expensive since it requires a copy of the instrumented VM and an actual

run of the benchmark applications. An alternative approach is to run the

simulation off-line using trace files. Trace files contain detailed information

on the memory management operations that occurred in the JVM during an

application run. They offer the flexibility of being able to develop a tailored

simulator that focuses only on the basic MM operations and at the same

time, be portable to be compiled and run on different platforms.

The trace files were acquired by instrumenting the Java Virtual Machine

(JVM), particularly the memory management module, to capture the basic

MM operations [24]. Instrumentation is done by inserting hooks in the JVM

code that handle memory-related operations. For each of the operations, a

line containing relevant information is written to a trace file which serves as

input to the memory management simulator (MMS) [23]. Details of the trace

file format is further discussed in Appendix B. A simulator treats the trace

file lines as mutator memory operations, allocates space, manages references

and performs garbage collections in order to accommodate the requirements

of the application. A complete description of the benchmarks is included in

Appendix A.

27

4.2.1 Zombie Objects

Trace files written directly from the instrumented JVM cannot be processed

readily due to the presence of zombie objects. In principle, once an object

dies, it remains dead. There should be no means by which they can be

referenced again. However, there are cases found in the trace files where an

object has become garbage only to reappear again in the latter part of the the

trace. This anomaly has been described as object resurrection [28]. For our

purposes, we label these objects as zombies, not to be confused with zombie

objects that refer to actual garbage objects in some literature [29][30][31].

Zombie objects result from pointer stores from C code of the JVM that were

not captured by the instrumented JVM since they bypass the Java Native

Interface (JNI) [32][33]. Unfortunately, they cause errors during simulations.

Attempts to accurately identify zombie objects in the trace files requires the

simulation of the object graph, which takes a long time. As a solution, we

created another post-processing step that defers rootset deletions until the

objects’ last access in the trace file. This ensures the object is still reachable

at least until its last access. However, this also results in an inaccurate trace

file (larger rootsets). This however, does not affect the GC experiments since

any GC algorithm will treat an object as live no matter how many pointers

it has as long as it is reachable from a rootset.

28

4.2.2 Suspended Thread Set

From a pessimistic point of view, threads are suspended (during GC) due

to the presence or in anticipation of escaping objects. As mentioned, this

carries with it a heavy price of long system pause times. An optimistic

point of view is the assumption that some of the threads may not contain

escaping objects at all and can thus be allowed to continue executing. The

thread-based approach offers the possibility of suspending only a subset of

the threads. This also offers the possibility of having other threads continue

executing during garbage collection. At the very least, the threads that need

to be suspended during collection include the triggering thread, the chosen

thread for collection (thread with the highest number of allocations, there

is a chance that this can also be the triggering thread), and those where

escaping objects escape to. Ideally, this subset of suspended threads is small.

A Java program (MyThreads.java) was written to determine if we can achieve

a small suspended thread set. The program runs five threads concurrently

with each thread performing many allocations. This Java program was run

under the same instrumented JVM where the DaCapo and SPECjvm bench-

marks were run. The trace file produced were also run under the same

simulators. Results are shown in Table 4.15 and Figure 4.16 and discussed

in Section 4.3.

29

4.3 Experimental Results

The Balanced Garbage Collection attempts to amortize garbage collection

across several collections to mitigate long system pause times. Thread-based

GC is a variation of this approach that aims to maximize throughput by

allowing possible concurrent execution of threads while collection is being

done on a minimal set of threads. Both approaches use a region-based heap

but with different allocation and collection set policies.

Similar to Balanced GC, thread-based GC imposes some criteria when se-

lecting regions to be part of the collection set, but instead of the criteria

being imposed directly on the regions, we impose the criteria on the threads.

The collection set comprises of regions that the chosen thread owns. In case

of the Balanced GC, the entire eden set was included in the collection set,

while in thread-based GC, only the regions that belong to the thread with

the most allocations are included. Both approaches used 30% of the total

number of regions as the eden set initially, with thread-based adjusting the

size based on the current number of regions that the chosen thread owns.

30

The benchmark Jython came closest to having similar results between the

Balanced GC and the thread-based GC. Further statistics in terms of aver-

age percentage of related threads show that Jython has a relatively smaller

percentage of related threads during GCs (Table 4.1). The average percent-

age of related threads is defined as the average ratio between the number of

threads where objects in the chosen thread escape to and the total number of

threads across all the GCs. Ideally, this should be as small as possible so as

to maximize the number of threads that could continue executing. However,

should we consider the work load of each thread for the benchmarks, wherein

work load is defined as the number of operations each thread performs in the

trace file (shown in Table 4.2), we can notice that Jython has only one thread

performing most of the work. This renders the thread-based approach similar

to the stop-the-world approach. For this reason, the Java program MyThread

(see Appendix C) was written to investigate the performance of thread-based

against Balanced GC given an application that contains mutually exclusive

threads.

Table 4.1: Average percentage of related threads.

Benchmark Average Percentage of Related Thread

batik 47%
pmd 27%
fop 30%

jython 10%
xalan 62%

xml.transform 10%
MyThreads 7%

31

Table 4.2: Workload distribution of threads per benchmark. Work load is
defined as the number of operations performed by a thread in the trace file.

Thread batik fop pmd jython xalan xml

0 3,053 3,053 3,053 3,053 3,052 3,093
1 10,016,963 15,962,350 1,031,418 2,614,761,135 610,032 1,289,646
2 17 17 17 17 14 13
3 2,122 2,569 2,068 2,072 1,998 3,016
4 12 12 12 12 12 12
5 270 189 1,473 4,297 2,564,720 3,560
6 6 512 25,503,221 13 2,615,973 260,818
7 7 11 1,221,996 11 2,476,722 63
8 859,581 724 1,519,728 12 2,601,973 132,776,378
9 58,192 12 1,042,694 945 2,642,073 38,608,229
10 155,199 – 1,379,639 – 2,680,988 7
11 154,498 – 1,310,101 – 2,657,219 185
12 154,498 – 1,141,759 – 2,507,546 14
13 11 – 969,434 – 2,609,437 145
14 115 – 960,730 – 2,542,536 12
15 2,071 – 874,901 – 2,474,234 758
16 12 – 998,219 – 2,596,409 –
17 – – 1,201,920 – 2,493,976 –
18 – – 934,490 – 2,623,789 –
19 – – 3,860,927 – 2,605,117 –
20 – – 986,357 – 2,647,318 –
21 – – 4,576,596 – 2,603,444 –
22 – – 2,006,949 – 2,565,841 –
23 – – 933,069 – 2,528,349 –
24 – – 1,548,288 – 2,609,558 –
25 – – 592,108 – 2,549,249 –
26 – – 1,500,988 – 2,580,447 –
27 – – 820,362 – 2,582,033 –
28 – – 866,103 – 2,627,767 –
29 – – 1,066,714 – 300 –
30 – – 90 – 11 –
31 – – 12 – 13 –
32 – – 11 – 762 –
33 – – 2,105 – – –

32

Table 4.3 shows the number of garbage collections that occurred during the

entire run of the benchmarks. The last column of the table is the equivalent

percentage of the ratio between the Balanced GC and Thread-based GC.

Figure 4.1 shows the corresponding graph of this table. It can be noticed that

more collections were triggered in the thread-based approach. The thread-

based approach allocates objects only in regions owned by the allocating

thread. If no region is found, a garbage collection is triggered in the hope that

it will free up some regions to be added back to the free list. In other words,

a successful allocation entails two conditions being met: there is enough

free space in the region, and the region belongs to the allocating thread.

In the case of Balanced GC, the first condition only needs to be satisfied.

A sharp increase in the number of GCs such as that of Xalan can indicate

that the distribution of allocations by the threads among different regions is

well-spread especially in the eden set.

These results also show that collecting partially from a thread frees enough

memory to allow execution until the end. The benchmark Xalan turned

out to have a much higher number of GCs for the thread-based GC. One

difference between Balanced GC and thread-based GC is in the size of the

collection set. Balanced GC has a more consistent size of the collection set

whereas in thread-based GC, it depends on how many regions the chosen

thread owns. The fewer regions it owns, the less memory will be freed.

Table 4.4 and Figure 4.2 show the number of regions collected in thread-

based GC turned out to be lower than that of the Balanced GC. This can

33

Table 4.3: Number of garbage collections. The last column is the percentage
equivalent of the ratio between the second and third columns.

Benchmark Balanced GC Thread-based GC %

batik 1 1 100%
pmd 4 45 562%
fop 1 1 100%

jython 25 25 100%
xalan 8 153 1,912%

xml.transform 12 13 108%
MyThreads 1 3 300%

Figure 4.1: Number of garbage collections.

be expected inasmuch as we only include parts of the eden set, that is, only

regions in the eden set that belong to the thread chosen for collection will be

included in the collection set. In addition, any non-eden region considered

to be part of the collection set should also belong to the same chosen thread.

This affects the number of bytes copied and remset updates during collection,

34

which in turn, affects the GC effort. Fewer regions collected results in fewer

bytes being copied. Tables 4.6 and 4.7 illustrates this point as well as Figures

4.4 and 4.5.

Table 4.4: Number of regions collected.

Benchmark Balanced GC Thread-based GC %

batik 256 232 91%
pmd 1,110 797 72%
fop 256 252 98%

jython 6,517 6,301 97%
xalan 2,162 2,033 94%

xml.transform 3,320 2,960 89%
MyThreads 512 406 79%

Figure 4.2: Number of regions collected.

Table 4.5 and Figure 4.3 shows results on the number of objects copied. It

35

can be clearly noticed that there is a lower number of objects copied across

all benchmarks. This comes as a result of fewer regions overall included in

the collection set.

Table 4.5: Number of objects copied.

Benchmark Balanced GC Thread-based GC %

batik 64,077 54,596 85%
pmd 1,064,595 806,705 76%
fop 187,213 175,794 94%

jython 890,039 561,810 63%
xalan 175,602 120,023 68%

xml.transform 1,767,843 670,808 40%
MyThreads 4,662 238 5%

Figure 4.3: Number of objects copied.

Table 4.6 and Figure 4.4 show the experimental results on the total number

of bytes copied.

36

Table 4.6: Bytes copied.

Benchmark Balanced GC Thread-based GC %

batik 14,145,656 13,032,328 92%
pmd 81,309,896 53,556,256 66%
fop 13,029,056 12,262,512 94%

jython 71,192,720 45,915,568 64%
xalan 66,645,416 55,313,096 83%

xml.transform 137,145,504 54,369,640 40%
MyThreads 348,888 7,616 2%

Figure 4.4: Bytes copied.

Table 4.7 shows data on total remset updates for both the Balanced and

Thread-based GC. These figures include remset deletions. Since remset up-

dates measure updates on regions outside the collections set, a sharp in-

crease in the benchmarks Pmd and Xalan can indicate that regions chosen

for collection by the Balanced GC has fewer escaping objects compared to

37

thread-based.

Table 4.7: Remset updates. The value na denotes not applicable.

Benchmark Balanced GC Thread-based GC %

batik 0 54,872 na
pmd 2,294,166 38,417,816 1,675%
fop 0 4,954 na

jython 35,085,087 37,643,331 107%
xalan 1,352,399 64,262,782 4,752%

xml.transform 3,932,187 9,038,310 230%
MyThreads 0 4,641 na

Figure 4.5: Remset updates.

Tables 4.8 and Figure 4.6 show updates on object references. Object reference

updates are made on pointers of an object that references live objects in the

collection set that were eventually moved to a new region during garbage

38

collection. The results show a trend towards fewer object reference updates

in thread-based GC compared to Balanced GC. This can also be attributed

to fewer regions and fewer objects copied.

Table 4.8: Object reference updates.

Benchmark Balanced Thread-based %

batik 1,704,011 1,592,040 93%
fop 3,090,062 3,091,101 100%

pmd 8,752,237 3,105,367 35%
xalan 8,995,994 4,258,987 47%
jython 48,781,786 42,215,406 87%

xml.transform 23,809,992 16,442,680 69%
MyThreads 19,532 3,312 17%

Figure 4.6: Object reference updates.

Table 4.9 and Figure 4.7 shows results on the number of remset additions.

We differentiate them from the remset updates in Table 4.7 and Figure 4.5

39

in that these are entries added to the remsets of newly acquired destination

regions of live objects during the copy phase of garbage collection.

Table 4.9: Collection set remset additions.

Benchmark Balanced Thread-based %

batik 120,488 84,722 70%
fop 786,248 786,885 100%

pmd 2,048,759 704,874 34%
xalan 1,182,095 1,241,315 105%
jython 13,619,499 16,236,157 119%

xml.transform 4,969,637 1,509,629 30%
MyThreads 1,533 1,656 108%

Figure 4.7: Collection set remset additions .

Table 4.10 and Figure 4.8 show the average garbage collection time in sec-

onds while Table 4.11 and Figure 4.9 show results on the overall simulation

time in seconds (wall clock). Balanced GC tends to have fewer GCs, longer

40

collection times per GC, and a shorter overall simulation time while the

thread-based GC tends to have more GCs, a shorter collection time per GC,

and longer overall simulation time. Simulation time is highly dependent on

the implementation of the simulator and is intended to be a rough estimate.

If Balanced GC amortizes collection across several instances to achieve bal-

anced collection times, the thread-based approach pushes this notion further

by having more GCs. Although the cumulative collection time is generally

longer, the average collection time per GC is shorter. The cumulative time

takes into account the cumulative overhead involved with every GC.

Table 4.10: Average garbage collection time in seconds.

Benchmark Balanced GC Thread-based GC %

batik 11.97 8.96 75%
pmd 17.47 6.58 38%
fop 14.09 10.36 74%

jython 18.16 14.76 81%
xalan 11.97 5.03 42%

xml.transform 15.66 11.71 75%
MyThreads 16.69 7.08 42%

Table 4.11: Simulation times in seconds.

Benchmark Balanced GC Thread-based GC %

batik 52.72 49.82 94%
pmd 344.87 590.74 171%
fop 73.79 72.33 98%

jython 1,766.8 1,771.39 100%
xalan 389.8 1,119.66 287%

xml.transform 893.5 906.76 101%
MyThreads 128 158.51 124%

41

Figure 4.8: Average garbage collection time.

Figure 4.9: Simulation times in seconds.

As performance metrics, we measure the amount of “effort” a garbage col-

lection has incurred over the entire run. The amount of effort is based on

statistics gathered on key attributes presented in the experimental results

42

section. Table 4.12 and Figure 4.10 show results on the calculated GC ef-

fort based on the formula defined in Section 3.5. Although the results show

more effort involved in the thread-based approach compared to Balanced GC

(there are zero values for batik and fop for Balanced GC since there were

no collections triggered), other factors such as the number of bytes copied,

number of regions in the collection set, and number of objects copied are less

than in the thread-based.

It can also be noticed that the best GC effort improvement happened in

the benchmark MyThreads. This can be attributed to the lack of escaping

objects between the threads, which is a big factor based on the formula. The

large discrepancies between Balanced GC and thread-based as shown in the

benchmarks Pmd and Xalan are due to the large discrepancies in remset

updates.

Table 4.12: Garbage collection effort.

Benchmark Balanced GC Thread-based GC %

batik 5,296,717 5,007,637 95%
pmd 34,305,302 90,445,772 264%
fop 8,595,004 8,511,809 99%

jython 190,252,335 181,693,077 96%
xalan 30,209,558 145,198,990 481%

xml.transform 34,739,183 59,267,814 171%
MyThreads 84,208 18,514 22%

In terms of GC Return, Table 4.13 and Figure 4.11 show results on the

number of bytes freed and Table 4.14 and Figure 4.12 show results on the

total net regions freed. For both the number of bytes freed and the number

43

Figure 4.10: Garbage collection effort.

of net regions freed, the values are slightly less in thread-based compared to

the Balanced GC. This could be attributed to fewer regions being included

in the collection set which generally results in fewer objects and fewer bytes

scanned during each GC.

Table 4.13: Bytes freed.

Benchmark Balanced GC Thread-based GC %

batik 120,070,232 107,964,760 90%
pmd 498,944,432 356,464,496 71%
fop 121,187,136 119,856,784 99%

jython 3,324,403,088 3,257,576,912 98%
xalan 1,063,246,224 971,418,952 91%

xml.transform 1,589,541,248 1,497,507,280 94%
MyThreads 133,868,824 106,235,552 79%

44

Figure 4.11: Bytes freed.

Table 4.14: Net regions freed.

Benchmark Balanced GC Thread-based GC %

batik 212 186 88%
pmd 670 551 82%
fop 230 226 98%

jython 5,747 5,642 98%
xalan 2,015 1,755 87%

xml.transform 3,034 2,992 99%
MyThreads 255 266 104%

4.3.0.1 MyThreads Experiments

A proposed advantage of the thread-based approach to garbage collection is

the potential concurrency that can happen during a GC. By having other

threads continue to execute while a GC is performed on another thread, long

system pause times caused by the stop-the-world approach can be mitigated.

45

Figure 4.12: Net regions freed.

One issue that prevents this from happening is the presence of escaping

objects. Escaping objects define the relationships between threads from the

point of view of garbage collection. If a thread is chosen for collection, threads

where its objects “escape to” need to be suspended as well. If escaping

objects escape to many different threads, then many threads would have to

be suspended during collection, and in the worst case, can have the same

effect as the stop-the-world approach.

This is the main motivation behind the following experiments. A Java pro-

gram was written (MyThreads.java) to purposely investigate if a scenario can

happen wherein there are few, if any, escaping objects between threads. Five

threads were instantiated using different classes. Each thread was tasked to

perform object allocations on a local variable a number of times frequently

46

enough to trigger a GC. The resulting trace file allocation distribution is

presented in Table 4.15. Thread T4 was tasked to perform many allocations

which resulted in about four million object allocations in the JVM. As ex-

pected, the simulator chose T4 as the thread to be collected when a GC was

triggered. During collection, remsets of regions in the collection set were

inspected to determine if there were objects escaping to other threads, which

would imply suspending those other threads as well. The worst-case scenario

is having objects escape to all the other threads, which would have the same

effect as a stop-the-world approach. As expected, the simulator found no

escaping objects during the collection. This supports the hypothesis that in

a thread-based GC, other threads can continue execution while the GC is

being performed on a minimal number of threads.

Table 4.15: Allocation distribution among threads for MyThreads bench-
mark.

Thread No. Number of Allocations

0 620
1 8,363
2 1
3 434
4 2,500,000
5 1,500,000
6 750,000
7 2,000,000
8 250,000
9 31
10 2
11 115

47

Table 4.16: Suspended thread set GC for Table 4.15.

GC No. Triggering Thread Chosen Thread Related Threads

1 4 5 1
2 7 4 1
3 4 4 1

Whenever there are escaping objects, there are implied synchronization is-

sues. The experiment shown in Figure 4.13 is an analysis of how threads

from the MyThreads benchmark can theoretically continue their indepen-

dent executions in the absence of a GC and escaping objects. Threads four

to eight, as mentioned, are specifically written to allocate locally. The x-

axis corresponds to the line steps (lines read from a file) while the y-axis

corresponds to the thread number. A line represents a sequence of opera-

tions from a thread’s trace file. A continuous line means the operations can

proceed without waiting for objects from another thread (escaping objects).

By adding GC times on the steps of the threads chosen for GCs in Figure

4.13, the thread that was collected most frequently and with the highest

final step (as measured by the x-axis) can serve as a rough estimate of the

makespan. The advantage of thread-based GC becomes more apparent when

GCs occur more often on threads that have fewer steps to finish and less of-

ten on threads that take more steps to finish. This will have the effect of

balancing out the running times for each thread, thus minimizing makespan.

If the same number of collections occur (with the same GC times) using

the Balanced GC, all GC times will be added to the running times of all

48

of the threads (since Balanced GC employs a stop-the-world approach) and

effectively, to the makespan as well. In other words, the makespan of Bal-

anced GC serves as an upper bound to the makespan of thread-based GC. In

addition, thread-based GC offers the flexibility of proactively choosing idle

threads for collection.

Figure 4.13: MyThreads is a Java program with five threads performing thou-
sands of allocations concurrently. The x-axis shows the number of operation-
steps while the y-axis shows the thread numbers.

In summary, restricting object allocation to regions owned by the allocating

thread resulted in increased occurrences of garbage collection in thread-based

GC as compared to Balanced GC. This in turn, resulted in fewer regions in-

cluded in the collection set, which resulted in lower values for thread-based

GC across the different experiments. In terms of GC effort, thread-based

49

GC results were higher due to increased remset updates that had to be per-

formed on non-collection set regions (smaller collection sets mean more non-

collection set regions).

MyThreads experiments show there can be few escaping objects between

threads. This suggests that in terms of escaping objects, GC can be per-

formed on a thread without hindering other threads from continued execu-

tion.

50

Chapter 5

Conclusion and Future Work

In automatic memory management, long system pause time is an undesirable

characteristic. A common culprit is the stop-the-world approach employed

by some garbage collection algorithms. The stop-the-world approach en-

tails suspending the execution of all threads thereby rendering the system

in a pause state. One obvious solution to this problem is to allow some of

the threads to continue execution while performing collection on a subset

of threads. However, there are certain cases that may prevent this scenario

from happening such as the presence of escaping objects.

In this study, we investigated the feasibility of a thread-based approach to

garbage collection. The goal is to mitigate the long system pause times

caused by the stop-the-world approach. We have identified and developed

some metrics to measure the performance of the thread-based garbage collec-

tion in comparison to the Balanced GC. This was implemented in a garbage

51

collection simulator having trace files as input. Experimental results show

that a thread-based approach triggered more collections than the Balanced

GC but at a shorter time per GC. On the other hand, the overall simulation

time was faster in the Balanced GC. In terms of other factors such as the

number of objects copied, the total bytes copied, and object reference up-

dates, thread-based was generally lower, while in terms of remset updates the

Balanced GC was lower. In terms of regions freed and bytes freed, Balanced

GC was generally higher.

The experimental results between the two approaches are generally similar.

The proposed advantage of a thread-based approach over Balanced GC is

in the increased parallelism that can occur as a result of being able to col-

lect from a subset of threads instead of the entire set. The experiments on

MyThreads suggest that from the point of view of escaping objects and in

its absence, garbage collection can be performed on a small set of threads

without hindering the continued execution of other threads. On the other

hand, benchmarks with high relationships among the threads in terms of

escaping objects will need to suspend more threads during GCs thereby ren-

dering pause times similar to the stop-the-world fashion. In summary, the

results suggest that for applications with few escaping objects, thread-based

GC is more promising than Balanced GC.

As a variation of this study and as possible future work, further investigation

of the thread-based approach can be conducted in a multi-threaded environ-

ment. Currently, the garbage collection simulator is a single-threaded ap-

52

plication that reads a single trace file sequentially. Simulating thread-based

garbage collection in a multi-threaded setting can bring more accurate re-

sults in terms of the timing of GC occurrences which can improve the results

in other metrics as well. The simulated concurrent execution of threads can

be extended to determine which threads are dependent on other threads in

terms of escaping objects, which can be a basis for thread-grouping. Since

trace files are usually very large, each thread group can have its own inde-

pendent trace file as input. Having a shared memory, some of the factors

that would be interesting to determine, including, the frequency of garbage

collection, the throughput, and the cumulative pause times for each thread

group.

53

Bibliography

[1] Mendel Rosenblum. The reincarnation of virtual machines. Queue,

2(5):pp. 34–40, July 2004.

[2] Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Collection

Handbook: The Art of Automatic Memory Management. Chapman &

Hall/CRC, 1st edition, 2011.

[3] Manfred Jendrosch, Gerhard Dueck, Charlie Gracie, and André Hinken-

jann. PC-based escape analysis in the Java Virtual Machine. In 5th

International Conference on Software Technology and Engineering (IC-

STE), 2013.

[4] Burka Peter Micic Aleksandar Sciampacone, Ryan. Garbage collection

in WebSphere Application Server V8, part 2: Balanced garbage collector

as a new option. Technical report, IBM Ottawa Lab, 2011.

[5] IBM Corporation. IBM knowledge center: How

to coexist with the garbage collector, April 2005.

54

https://www.ibm.com/support/knowledgecenter/en/SSYKE2 8.0.0/

com.ibm.java.win.80.doc/diag/understanding/mm gc coexist.html.

[6] John McCarthy. Recursive functions of symbolic expressions and their

computation by machine, part i. Commun. ACM, 3(4):pp. 184–195,

April 1960.

[7] Mattias Persson. Java technology, IBM style, Part 1: Garbage collection

policies. Technical report, IBM Corporation, 2006.

[8] George Collins. A method for overlapping and erasure of lists. Commun.

ACM, 3(12):pp. 655–657, December 1960.

[9] David Bacon and VT Rajan. Concurrent cycle collection in reference

counted systems. In Proceedings of the 15th European Conference on

Object-Oriented Programming, ECOOP ’01, pages 207–235, London,

UK, UK, 2001. Springer-Verlag.

[10] Thomas Christopher. Reference count garbage collection. Software:

Practice and Experience, 14(6):pp. 503–507, 1984.

[11] Alejandro Martnez, Rosita Wachenchauzer, and Rafael Lins. Cyclic

reference counting with local mark-scan. Information Processing Letters,

34(1):pp. 31 – 35, 1990.

[12] David Bacon, Richard Attanasio, Han Bok Lee, VT Rajan, and

Stephen E. Smith. Java without the coffee breaks: A nonintrusive mul-

tiprocessor garbage collector. In PLDI, 2001.

55

[13] Helena Rodrigues and Richard Jones. Cyclic distributed garbage col-

lection with group merger. In European Conference on Object-Oriented

Programming, pages 260–284. Springer Berlin Heidelberg, 1998.

[14] Barry Hayes. Using key object opportunism to collect old objects. In

Conference Proceedings on Object-oriented Programming Systems, Lan-

guages, and Applications, OOPSLA ’91, pages 33–46, New York, NY,

USA, 1991. ACM.

[15] Urs Hlzle. A fast write barrier for generational garbage collector. In

OOPSLA93 Garbage Collection Workshop, Washington, D.C., October

1993.

[16] Stephen Blackburn and Kathryn McKinley. In or out?: Putting write

barriers in their place. In ACM SIGPLAN Notices, volume 38, pages

175–184. ACM, 2002.

[17] Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. A

retrospective on region-based memory management. Higher-Order and

Symbolic Computation Journal, 17:pp. 245–265, 2004.

[18] Peter Bishop. Computer Systems with a Very Large Address Space and

Garbage Collection. Technical report (Massachusetts Institute of Tech-

nology. Laboratory for Computer Science). Massachussets Institute of

Technology, Laboratory for Computer Science, 1977.

56

[19] Dave Hanson. Fast allocation and deallocation of memory based on

object lifetimes. Softw. Pract. Exper., 20(1):pp. 5–12, January 1990.

[20] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling

Wang, and James Cheney. Region-based Memory Management in Cy-

clone, pages 282–293. PLDI ’02. ACM, 2002.

[21] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam Sreedhar,

and Sam Midkiff. Escape analysis for Java. In Proceedings of the 14th

ACM SIGPLAN Conference on Object-oriented Programming, Systems,

Languages, and Applications, OOPSLA ’99, pages 1–19, New York, NY,

USA, 1999. ACM.

[22] Sun Microsystems. Memory management in

the java hotspot virtual machine, April 2006.

http://www.oracle.com/.../java/javase/memorymanagement-

whitepaper-150215.pdf.

[23] Konstantin Nasartschuk, Marcel Dombrowski, Tristan Basa, Mazder

Rahman, Kenneth Kent, and Gerhard Dueck. Garcosim: A frame-

work for automated memory management research and evaluation. In

Proceedings of the 9th EAI International Conference on Performance

Evaluation Methodologies and Tools, VALUETOOLS’15, pages 263–268,

ICST, Brussels, Belgium, Belgium, 2016. ICST (Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering).

57

[24] Md Mazder Rahman, Konstantin Nasartschuk, Kenneth B Kent, and

Gerhard W Dueck. Trace files for automatic memory management sys-

tems. In Software Analysis, Evolution, and Reengineering (SANER),

2016 IEEE 23rd International Conference on, volume 2, pages 9–12.

IEEE, 2016.

[25] Benjamin Zorn. Comparative performance evaluation of garbage collec-

tion algorithms. PhD thesis, University of California, Berkeley, 1989.

[26] Stephen Blackburn, Robin Garner, Chris Hoffmann, Asjad Khang,

Kathryn McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,

Daniel Frampton, and Samuel Guyer. The DaCapo benchmarks: Java

benchmarking development and analysis. In ACM Sigplan Notices, vol-

ume 41, pages 169–190. ACM, 2006.

[27] Kumar Shiv, Kingsum Chow, Yanping Wang, and Dmitry Petrochenko.

SPECjvm2008 performance characterization. In Proceedings of the 2009

SPEC Benchmark Workshop on Computer Performance Evaluation and

Benchmarking, pages 17–35, Berlin, Heidelberg, 2009. Springer-Verlag.

[28] Sasha Goldshtein, Dima Zurbalev, and Ido Flatow. Pro .NET Perfor-

mance: Optimize Your C# Applications. Apress, Berkely, CA, USA, 1st

edition, 2012.

58

[29] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley.

The Java Language Specification, Java SE 8 Edition. Addison-Wesley

Professional, 1st edition, 2014.

[30] Stefan Richthofer. Garbage collection in JyNI - how to bridge

mark/sweep and reference counting GC. CoRR, abs/1607.00825, 2016.

[31] S. Goldshtein, D. Zurbalev, S. Group, and I. Flatow. Pro .NET Per-

formance: Optimize Your C# Applications. Expert’s voice in .NET.

Apress, 2012.

[32] Sylvia Dieckmann and Urs Hölzle. A study of the allocation behavior of

the SPECjvm98 Java benchmarks. In European Conference on Object-

Oriented Programming, pages 92–115. Springer, 1999.

[33] Ran Rinat and Scott Smith. Modular internet programming with cells.

In European Conference on Object-Oriented Programming, pages 257–

280. Springer, 2002.

59

Appendix A

Benchmark Descriptions

The benchmark suites used were mainly from Dacapo 9.12 and SPECjvm2008.

A special purpose Java program was also created to test thread independence

in terms of escaping objects.

A.1 Dacapo 9.12

A.1.1 Aurora

Simulates a number of programs run on a grid of AVR microcontrollers.

A.1.2 Batik

Produces a number of Scalable Vector Graphics (SVG) images based on the

unit tests in Apache Batik.

60

A.1.3 Fop

Takes an XSL-FO file, parses it and formats it, generating a PDF file.

A.1.4 Lusearch

Uses Lucene to do a text search of keywords over a corpus of data comprising

the works of Shakespeare and the King James Bible.

A.1.5 Luindex

Uses Lucene to indexes a set of documents; the works of Shakespeare and

the King James Bible

A.1.6 Pmd

Analyzes a set of Java classes for a range of source code problems.

A.1.7 Jython

Inteprets a the pybench Python benchmark.

A.1.8 Xalan

Transforms XML documents into HTML.

61

A.2 SPECjvm2008

A.2.1 Compiler.compiler

This benchmark uses the OpenJDK (JDK 7 alpha) front end compiler to

compile a set of .java files. The code compiled is javac itself. This benchmark

uses its own FileManager to deal with memory rather than with disk and file

system operations. ’-proc:none’ option is used to make this benchmark 1.5

compatible.

A.2.2 Compiler.sunflow

This benchmark uses the OpenJDK (JDK 7 alpha) front end compiler to

compile a set of .java files. The code compiled is sunflow sub-benchmark

from SPECjvm2008. This benchmark uses its own FileManager to deal with

memory rather than with disk and file system operations. ’-proc:none’ option

is used to make this benchmark 1.5 compatible.

A.2.3 Serial

This benchmark serializes and deserializes primitives and objects, using data

from the JBoss benchmark. The benchmark has a producer-consumer sce-

nario where serialized objects are sent via sockets and deserialized by a con-

sumer on the same system. The benchmark heavily stress the Object.equals()

test.

62

A.2.4 Sunflow

This benchmark tests graphics visualization using an open source, internally

multi-threaded global illumination rendering system. The sunflow library is

threaded internally, that is, it is possible to run several bundles of depen-

dent threads to render an image. The number of internal sunflow threads is

required to be 4 for a compliant run. It is however possible to configure in

property specjvm.benchmark.sunflow.threads.per.instance, but no more than

16, per sunflow design. Per default, the benchmark harness will use half the

number of benchmark threads, that is, will run as many sunflow benchmark

instances in parallel as half the number of hardware threads.

A.2.5 Xml.transform

This benchmark has two sub-benchmarks: XML.transform and XML.validation.

XML.transform exercises the JRE’s implementation of javax.xml.transform

(and associated APIs) by applying style sheets (.xsl files) to XML documents.

The style sheets and XML documents are several real life examples that vary

in size (3KB to 156KB) and in the style sheet features that are used most

heavily. One ”operation” of XML.transform consists of processing each style

sheet/document pair, accessing the XML document as a DOM source, a SAX

source, and a Stream source. In order that each style sheet/document pair

contribute about equally to the time taken for a single operation, some of

the input pairs are processed multiple times during one operation.

63

Result verification for XML.transform is somewhat more complex than for

other of the benchmarks because different XML style sheet processors can

produce results that are slightly different from each other, but all still correct.

In brief, the process used is this. First, before the measurement interval be-

gins the workload is run once and the output is collected, canonicalized (per

the specification of canonical XML form) and compared with the expected

canonicalized output. Output from transforms that produce HTML is con-

verted to XML before canonicalization. Also, a checksum is generated from

this output. Inside the measurement interval the output from each operation

is only checked using the checksum.

XML.validation exercises the JRE’s implementation of javax.xml.validation

(and associated APIs) by validating XML instance documents against XML

schemata (.xsd files). The schemata and XML documents are several real life

examples that vary in size (1KB to 607KB) and in the XML schema features

that are used most heavily. One ”operation” of XML.validation consists of

processing each style sheet / document pair, accessing the XML document as

a DOM source and a SAX source. As in XML.transform, some of the input

pairs are processed multiple times during one operation so that each input

pair contributes about equally to the time taken for a single operation.

64

A.3 MyThreads

A Java program that runs five threads from five different classes. Each thread

was tasked to allocate objects to a local variable a number of times to the

point of a garbage collection.

65

Appendix B

Trace File Format

Trace files contain event logs from memory management operations that hap-

pened in an instrumented JVM run and are post-processed to the following

format to serve as input to the GarCoSim simulator.

The different memory management operations captured in the trace files are

as follows:

B.1 Allocation

Most objects allocated by Java applications are short-lived [16]. Given the

overhead of allocating an object from the general heap, also known as the

slow-path allocation, this becomes a bottle-neck in system performance. To

circumvent this, performance-oriented JVMs have provisions for assigning

regions of memory for exclusive use of a thread. Objects that are identified

66

as being short-lived are allocated from these exclusive regions, also known

as fast-path allocation, thereby avoiding the need for expensive synchroniza-

tion operations. Within both the slow-path and fast-path allocations, we

distinguish between single and indexable (arrays) objects. With fast-path

indexable objects, we distinguish between contiguous and discontiguous ar-

rays. All in all, we identify five types of allocation. An extra field is added

to the j9object to contain the object ID. The integer value assigned to the

object id is taken from a global variable that is also added to keep track of

the current number of objects allocated.

For every allocation, the information we trace includes the names of threads

handling the object allocation, the object id, the size of the object, the

number of object reference slots, the class name of the object, the total

instance size of the class, and the number of static fields of the class. Format

is as follows:

a Ti Oj Sk Nl Cm (B.1)

a indicates the allocation operation, Ti is the thread performing the opera-

tion, Oj is the object being allocated, Sk is the size of the object, Nl is the

number of reference slots that the object will contain, and Cm is the class ID

of the object.

67

B.2 Reference Operation

A reference operation is a way of referencing objects from another object.

Objects usually contain reference slots the number of which is indicated dur-

ing allocation. The format for this operation is as follows:

w Ti Pj #n Ok Fm Sn Vo (B.2)

w indicates the reference operation, Ti is the thread performing the operation,

Pj is the parent object whose slot #n is being assigned to point to object Ok,

Fm is the offset of the first slot, Sn is the size of the slot, and Vo indicates

whether it’s volatile or not.

B.3 Class Operation

A class operation is similar to a reference operation except for the parent

object being replaced by a class ID. This implies the slot being assigned is

static field of the class. The format for this operation is as follows:

c Ti Cj Ok Sn (B.3)

c indicates the class operation, Ti is the thread performing the operation, Cj

is the class whose slot Sn is being assigned to point to object Ok.

68

B.4 Store Access

Four different store accesses are as follows:

1. store primitives into an object: This operation is performed when

a variable of an object field is assigned with data of a primitive type.

The recorded data are thread name, object id, field size, field offset,

and field type (volatile/non-volatile).

2. store references into an object: This operation happens when an

object references another object. Relevant information needed for this

operation includes the object IDs of both the parent object and the

child object, and the reference slot number. The JVM has implemented

a write barrier whenever fields are going to be stored into. Hooks

were added in these barriers to output relevant information such as the

thread, the parent and the child object, and the object reference slot

where the child object will be pointed from. The format for these store

operations are as follows:

s Ti Pj Ix Sn Vo (B.4)

s Ti Pj Fm Sn Vo (B.5)

s indicates a store operation, Ti indicates the thread performing the

operation, Pj indicates the object to be written into, Ix is the slot

69

number, or Fm if it’s slot offset, Sn is the slot size, and Vo indicates

whether the fiels is volatile or not.

3. store primitives into a class: This operation is performed when a

static variable of a class field is assigned with data of a primitive type.

The recorded data are thread name, class name, field size, field offset,

field type (volatile/non-volatile).

4. store references into a class: This operation similar to object-to-

object referencing except that the object reference slot is a static field.

The recorded information is thread name, class name, field offset/index,

object id, field size, field type (volatile/non-volatile). The format for

these store operations are as follows:

s Ti Cj Ix Sn Vo (B.6)

s Ti Cj Fm Sn Vo (B.7)

s indicates a store operation, Ti indicates the thread performing the opera-

tion, Cj is the class to be written into, Ix is the slot number, or Fm if it’s a

slot offset, Sn is the slot size, and Vo indicates whether the fiels is volatile or

not.

70

B.5 Read Access

We also instrument an object whenever it (or one of its field) is accessed. In-

formation from this operation can be used for analyzing the effects of caching.

Formats are as follows:

r Ti Oj Ix Sn Vo (B.8)

r Ti Cj Ix Sn Vo (B.9)

r indicates a read operation, Ti is the thread performing the operation, an

Oj indicates an object, a Cj indicates the class,whose slot Ix is to be read,

Sn is the size of the slot, and Vo indicates whether it is volatile or not.

B.6 Rootset Dump

Rootset dumps are a way of inspecting a thread’s rootset. Since this should

be done in a stop-the-world fashion, an asynchronous-handler is signaled

whenever allocation is done. The timing of the actual dump depends entirely

on the JVM. Rootset additions and rootset deletions are inferred between two

rootset dumps in the next phase. Formats are as follows:

+ Ti Oj (B.10)

− Ti Oj (B.11)

71

+/− indicates the rootset operation, a “+” for an addition, and “-” for dele-

tion, Ti indicates the thread whose rootset the operation will be performed,

and Oj is the target object to be unreferenced.

72

Appendix C

Source Code

public class MyThreads {

public static void main(String[] args){

AllocThread1 t1 = new AllocThread1(2500000);

AllocThread2 t2 = new AllocThread2(1500000);

AllocThread3 t3 = new AllocThread3(750000);

AllocThread4 t4 = new AllocThread4(2000000);

AllocThread5 t5 = new AllocThread5(250000);

t1.start();

t2.start();

t3.start();

t4.start();

t5.start();

try {

73

while (t1.isAlive() && t2.isAlive() && t3.isAlive()

&& t4.isAlive() && t5.isAlive()) {

Thread.sleep(1500);

}

}

catch(InterruptedException e) {

System.out.println("Main thread interrupted");

}

}

}

public class AllocThread# extends Thread {

int allocSize; //how much to allocate

int i;

Object x;

AllocThread1(int size) {

allocSize = size;

}

public void run() {

for (i = 0; i < allocSize; i++)

x = new double[1];

}

}

74

Vita

Name: Tristan M. Basa
Address: 289-2 Regent St., Fredericton, New Brunswick, Canada
Mobile: (506)260-7921
Email: tbasa@unb.ca

Education

MS Comp. Sci., University of New Brunswick, Fredericton (continuing).
MS Comp. Sci., University of the Philippines, Diliman, 2000.
B Comp. Sci., University of the Philippines, Diliman, 1995.

Professional Experience

Asst. Professor, Dept. of Comp. Sci., UP Diliman, Philippines, 2008–13.
IT-Consultant, Ayala Mind Museum, Taguig City, Philippines, 2011
IT-Consultant, Summit Realty Inc., San Juan, Philippines, 2003–10.
Lecturer, Kalayaan College, Marikina City, Philippines, 2003–04.
Senior Developer, K2 Interactive Inc., Pasig City, Philippines, 2000–03.
Software Engr., Interim Asia Ltd., Makati City, Philippines,1997–98.
Programmer, Software Brewers Inc., Makati City, Philippines, 1995-96

Selected Publications

GABAY: An e-Learning Filipino Sign Language Tutorial Using Manifold
Learning and Dynamic Time Warping, 8th National Conference on Infor-
mation Technology Education, Boracay, Philippines, 2010, (Best Paper)

Using Psychological Signals to Evolve Art, 4th EvoMusART, LNCS, Bu-
dapest, Hungary, 2006.

MMORPG Map Evaluation Using Pedestrian Agents, Christian Anthony L.
Go, Tristan M. Basa, Won-Hyung Lee, Proceedings of the 1st International
Conference on Advances in Hybrid Information Technology, pp. 323-332,
Jeju, South Korea, 2006.

A Bayesian Approach to a Computational Model of Curiosity, KSII Conf.,
Suwon, South Korea, 2004 (Best Paper)

Skills

C, C++, Java, JavaScript, PHP, ASP, Visual Basic, HTML, MySQL, MS
SQL, Postgres, JVM, Linux, Unix, Windows

