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Abstract

The primary contribution of this project is to package R source code created to support

the fitting and evaluation of Quantitative Fatty Acid Signature Analysis (QFASA) models

into a FOSS module available on CRAN. The existing code is widely used by the QFASA

community but is inconsistently documented and maintained. This makes it difficult for

new users to get up to speed with new and current QFASA methodologies, and to distribute

code fixes and improvements.

Creating an R package is a well-defined process and encourages the use of software engi-

neering best practices and the production of well-documented modules that are easy to

install and maintain.

This report describes the process of diet estimation via the QFASA methodology and

reviews some of the underlying statistical methodologies. We detail the R packaging

process and our interaction with CRAN to publish the package, and our implementation

of parallel computing methods to improve the speed and efficiency of model inference by

making use of multi-core processors. Finally, for comparison, we review a similar QFASA

module, qfasar, which was released subsequently.
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Chapter 1

Overview

Quantitative Fatty Acid Signature Analysis (QFASA) is a statistical model that aims to

provide quantitative estimates of the proportion of prey species in the diets of individual

predators based on their fatty acid signatures. The primary contribution of this project is

to package R source code created in support of research into and application of QFASA diet

estimation models [14, 22–25] into a FOSS module available on CRAN. Code developed

in support of these studies is widely used by the QFASA community but is inconsistently

documented and maintained. This makes it difficult for new users to get up to speed with

new and current QFASA methodologies, and to distribute code fixes and improvements.

Creating an R package is a well-defined process and encourages the use of software engi-

neering best practices and the production of well-documented modules that are easy to

install and maintain.

This report describes the process of diet estimation via the QFASA methodology and

reviews some of the underlying statistical methodologies. We detail the R packaging

process and our interaction with CRAN to publish the package, and our implementation

of parallel computing methods to improve the speed and efficiency of model inference by

making use of multi-core processors. Finally, we review, for comparison, a similar QFASA

module [5].
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Chapter 2 is an overview of the motivation and theories behind the use of fatty acid

signatures to estimate a predator’s diet. We review relevant literature supporting the

development of the original QFASA R code and recent extensions. This includes different

methods employed to handle essential zeros in the QFASA diet estimates.

In Chapter 3 we describe QFASA mixture models that incorporate essential zeros and

detail specifically an improved method of handling them based on the zero-inflated beta

distribution. This method is the basis of the bootstrap simulations used in the QFASA R

package to generate confidence intervals for the true diet.

Chapter 4 details the implementation of our R package encapsulating and extending

QFASA functions from [22–24]. We describe additions to the original source code re-

quired to create the package as well as the CRAN submission process. We detail the

optimizations made to leverage third-party root-finding tools and multicore processors.

We also review a complementary R package which leverages the same underlying theories

but with a more specific focus on conducting predator simulations.

Finally, in Chapter 5, the contributions of the QFASA R package towards making the

QFASA diet estimation methods more accessible and scalable to a wider group of practi-

tioners are summarized.

Appendix A contains detailed application programming interface (API) documentation on

the functions implemented in our R QFASA package.

2



Chapter 2

Quantitative Fatty Acid Signature

Analysis

2.1 Introduction

This chapter is an overview of the motivation and methods underlying Quantitative Fatty

Acid Signature Analysis (QFASA), the use of fatty acid signatures (proportions of indi-

vidual fatty acids that sum to one) to estimate a predator’s diet. We review literature

supporting the development of the original QFASA implementation and subsequent ex-

tensions, including methods to handle essential zeros and to perform inference on predator

diet estimates. These methods form the basis of our QFASA R package.

2.2 Diet Estimation

Direct observation of predators feeding over long periods of time is difficult, particularly

for marine mammals. For this reason, indirect methods may be necessary to reconstruct

diet. Indirect methods mostly rely on the recovery of digestion-resistant prey structures
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from feces, stomach contents, or spewings. However, differential rates of digestion among

prey species can significantly bias estimates. Also, such methods provide only a snapshot

of the most recent meal, may not be representative of long term diet, and are lethal [14].

Other techniques involve analysis of the stable isotope ratios of carbon and nitrogen and

do not depend on the recovery of digestant-resistant hard parts but have demonstrated

limited success and usually cannot determine the species composition of the diet.

QFASA [14] is a statistical model that aims to provide quantitative estimates of the pro-

portion of prey species in the diets of individual predators based on their fatty acid (FA)

signatures, obtained through a non-lethal biopsy, and is intended to address shortcom-

ings of the techniques described above. QFASA relies on a distance metric rather than

a model-based formulation to estimate the most likely diet proportions. It was the first

quantitative approach to estimating diet proportions using FAs and it has already seen

widespread use, particularly in studies of marine mammals.

Some recent examples of the use of QFASA include a study on long term diets of New

Zealand sea lions that found QFASA estimates to be sensitive to calibration coefficients

(discussed in Subsection 2.2.2) but in strong agreement with commercial catches over

the same period [16]. In [7], QFASA was used to compare diet estimates for Pacific

North West harbour seals with previous estimates obtained via scat analysis. In [9], diets

of Atlantic salmon were estimated using QFASA, a first application of the method in

fish, and established a set of FAs and calibration coefficients, which reflect the extent

to which specific FAs undergo deposition or metabolism, to begin subsequent studies.

In [12], an evaluation of QFASA was conducted using controlled feeding experiments of

lake trout and found diet estimates to be highly accurate in cases of limited prey diets.

In [17], a Bayesian mixture model for diet estimation was proposed which combines fatty

acid signatures and stable isotope measurements. The method provides point estimates

and probability distributions for individual and population level diet proportions. The R

package fastinR implements this model as well as provides simulated examples and the

analysis of experimental data. This code is separate from that involved in our QFASA

package.

4



2.2.1 Fatty Acids

Fatty acids are the main constituents of lipids. Unlike other nutrients, such as proteins,

that are broken down during digestions, some fatty acids are released from ingested lipid

molecules (prey fat) but not degraded. Since a relatively limited number of fatty acids

can be bio-synthesized by animals [10], it is possible to distinguish between dietary versus

non-dietary components [14].

Although some metabolism of fatty acids occurs within the predator, such that the com-

position of predator tissue will not exactly match that of their prey, fatty acids can be

deposited in adipose tissue with little modification and in a predictable way [14]. In prac-

tice, calibration coefficients (discussed in Subsection 2.2.2), constants usually derived from

feeding trials, are used to account for differential metabolism of individual fatty acids.

2.2.2 Model

The original QFASA model was proposed by [14] and forms the basis of derivative works

[22–24], and our QFASA R package. To obtain QFASA diet estimates we require a set

of predator FA signatures as well as a database of FA signatures from individual prey of

I different species. Each row of the prey database represents a single prey FA signature,

which sums to one, corresponding to FAs in the predator signatures. The model attempts

to find the proportions of prey species which best explain a predator’s FA signature. More

formally, we find the diet proportions pk for each prey species k = 1 . . . I that minimize the

distance between a predator’s observed FA signature, Y, and Ŷ, the result of combining

prey FA signatures in said proportions. These estimated proportions are referred to as the

QFASA diet estimates. Equation 2.1 shows how the predator FA signature is estimated

from diet proportions and prey database averaged by prey species, X̄k of dimension nfa by

1 where nfa is the number of FAs being considered in the model.

5



Ŷ =
I∑

k=1

pkX̄k (2.1)

A number of different distance measures have been used in various QFASA studies. No

single measure seems to be optimal for all applications. We discuss the main contenders

in Section 2.2.3.

Fitting of the QFASA model is performed in the p.QFASA() function in the QFASA R

package. It uses a non-linear optimizer [33] to minimize a statistical distance between

actual and estimated predator fatty acid signature subject to the constraints that
∑
pk = 1

and 0 6 pk 6 1.

Iverson et al. [14] found that more accurate diet estimates could be obtained by introducing

factors to account for different levels of fat content in prey as well as different rates of

deposition and bio-synthesis of fatty acids in predators.

Prey species with higher fat content will contribute proportionately more per unit intake

to a predator’s signature than species with a lower fat content. To take this between-

species variation into account, [14] makes an adjustment on dietary estimates. The actual

estimate of diet proportion derived from prey type k is calculated as:

pk =
p∗k/fk∑
k p
∗
k/fk

where fk is the average fat content and p∗k the diet proportion estimated by the QFASA

model of prey type k.

To account for different rates of deposition and biosynthesis of different fatty acids across

predator species, the QFASA model makes use of calibration coefficients, a vector of fatty

acid weights. This vector is aligned with the fatty acids included in the model and encapsu-

lates how a particular composition of ingested fatty acids would manifest in the predator’s

tissues. In the original QFASA study [14], calibration coefficients are derived empirically

6



from feeding experiments on grey and harp seals where the seals are fed a single species

for an extended period of time. Simulation studies conducted in [6, 8] concluded that

the choice of distance measure affects the robustness of QFASA to errors in calibration

coefficients.

Calibration coefficients cj are derived for each FA type j by comparing the predator FA

signature in the experimental studies to their prey signatures. One way to include these

calibration coefficients in the compositional distance measures is by replacing the preda-

tor’s observed proportion of FA j, y∗j by

yj =

y∗j
cj∑nfa

j=1

y∗j
cj

where nfa is the number of FA types being considered in the model. In practice, after incor-

porating calibration coefficients, a subset of prey FAs (usually comprised of dietary FAs)

are used in predator diet modeling. The process of extracting relevant FAs is discussed

in [14] and is supported by functions in the QFASA R package.

2.2.3 Distance Measures

The R function p.QFASA() can be directed to optimize based on any one of the following

distance measures between actual and estimated predator FA signatures when fitting the

QFASA model:

• Kullback–Liebler (KL) Distance is the sum of the forward and backward Kullback-

Liebler Divergence. The KL Divergence is a general measure of how similar two

distributions are to one another. It can be interpreted as the relative entropy of Y

given Ŷ , or how well Ŷ approximates Y . This is the measure used in the original

QFASA model [14] and is defined as

7



KL(Y, Ŷ) =

nfa∑
j=1

(yj − ŷj) log

(
yj
ŷj

)
.

• Aitchison (AIT) Distance is a measure developed specifically for working with

compositional data and is defined within the context of Aitchison’s geometry of the

compositional simplex [1]. Aitchison [1] argues that this is the preferred measure for

working with compositional data without zero-valued components, and it defined as:

AIT (Y, Ŷ) =

nfa∑
j=1

(
log

(
yj
g(Y)

)
− log

(
ŷj

g(Ŷ)

))2

,

where g(.) is the geometric mean of the FA signature in this case

g(Y) =

(
ns∏
i=1

Yi

)1/ns

.

where ns is number of individual predators for which we require diet estimates.

This distance measure is based on Aitchison’s centered-logratio transformation and

satisfies the principles of scale invariance and subcompositional coherence which are

detailed in Section 2.3.

• Chi-Square (CS) Distance is a test statistic proposed by [25], and examined

further in [23], specifically to handle essential zeros in compositional QFASA data.

The intent was to formulate a distance measure that did not require essential zeros

to be altered and to satisfy the principles of scale invariance and subcompositional

coherence at least approximately. Section 2.4 describes the issue of essential zeros

in more detail.

The distance is based on [11] and was shown empirically to converge to the AIT

distance when the data is power transformed (i.e Yγ) and re-closed, as γ tends to

zero.

The power of the transformation γ needs to be chosen before calculating the distance

measure. Stewart [23] recommended using γ = 1.

8



CS(Y, Ŷ, γ) =
1

γ

√
2nfa

(
nfa∑
j=1

(Zj − Ẑj)2

cj

) 1
2

where Z and Ẑ are the re-closed power transforms by γ of Y and Ŷ respectively,

and cj = Zj + Ẑj.

As mentioned previously, the QFASA diet estimates are affected by the distance measure

used and the most appropriate measure seems to depend on the application specifics. In [6]

it was found that the Aitchison distance measure was most robust to errors in the calibra-

tion coefficients and that the KL distance was most robust to the consumption of prey not

represented in the prey database. Of the three distance measures described above, only CS

distance can be used with zero components since AIT and KL both involve logarithms.

If zero components are considered to be rounded zeros, such as those occurring in FAs,

adjustments can be made to accommodate AIT and KL distance measure. However, if

the zero components are considered to be essential zeros, as is the case for predator diets,

these adjustments are not appropriate and only CS distance can be used for applications

involving measuring distance between diet estimates. The distinction between rounded

and essential zeros is described in more detail in Section 2.4.

2.2.4 Standard Error of Estimates

The modeling procedure used in [14] does not take into account within-prey-species varia-

tion in FA composition as we use the species means in the QFASA model (Equation 2.1).

Also, it does not consider other sources of variability, such as variability in calibration

coefficients or prey fat content. To estimate the standard error in the QFASA diet esti-

mates, [14] uses a procedure in which the prey species FA signatures are bootstrapped as

follows:

1. Generate X̄
∗b
k by randomly sampling each prey type with replacement, for k = 1 . . . I.

9



2. Estimate p∗b using X̄
∗b
k , in the QFASA model for each k = 1 . . . I .

The standard error for each prey type k is estimated as:

SE(pk) =

√∑B
b=1 [p∗bk − p̄∗bk ]2

B − 1

where B is the number of bootstrap estimates.

A similar bootstrap approach was used in [24] to estimate variance arising from within-

species FA signatures but incorporates variability due to unknown calibration coefficients

and fat content. These more sophisticated methods of error estimation allow the construc-

tion of valid confidence intervals and are discussed in [22,24]. The methods devised in [22]

are implemented in the QFASA R package function beta.meths.CI() and are discussed

in Section 2.4.

2.2.5 Simulation

Simulation has been used extensively to assess the fit of the QFASA model as well as

estimate variance introduced by factors not included in the model. Generally this involves

generating pseudo-predators by resampling the prey database proportionately according

to a selected true diet. The QFASA model is subsequently used to estimate the diets of

these pseudo-predators. The distribution of the estimates can be used to validate new

methodologies for QFASA.

Simulations were conducted in [14] to evaluate the sensitivity of QFASA to choice of

distance measure and the amount of random noise added to the simulated diet. This noise

is meant to represent the proportion of the diet made up of incidental consumption of prey

not represented by a prey species in the model. Simulations were used in [23] to compare

QFASA distance measures. Pseudo-predator simulations were used in [22, 24] to assess

coverage probability of estimated confidence intervals. Simulations were also used in [6,8]

10
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Figure 2.1: Hierarchical cluster analysis on mean FA signature using Aitchison distance

to assess the impact of distance measure selection and the robustness of QFASA to errors

in calibration coefficients. The qfasar R package [5] encapsulates methods and functions

used in this research.

To simulate predators for the assessment of their model, [24] used one of the diets developed

by [14] considered to be a difficult modeling case because of the similarity of the FA

signatures of the prey species involved. The diet uses 8 species out of 28 in the original

prey database. This same diet is used in a simulation study described in Section 4.4.1.

Figures 2.1, 2.2, and 2.3 show these 8 species clustered hierarchically using the Aitchison,

Kullback-Liebler, and Chi-Square distance measures respectively. The y axis shows the

respective distance measure at which adjacent clusters are agglomerated. The dendrograms

were generated by plotting the output of QFASA R package’s prey.cluster() function.

It is evident that resulting cluster structure is affected by choice of distance measure,

although the same cluster hierarchy arises for both KL and CS distance measures.
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Figure 2.2: Hierarchical cluster analysis on mean FA signature using Kullback-Liebler
distance
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Figure 2.3: Hierarchical cluster analysis on mean FA signature using Chi-Square distance
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2.3 Compositional Data

A predator diet represents the relative amount of each prey species consumed by the

predator. This type of data is known as compositional, where each component represents

a proportion of the whole. Compositional data presents issues when subject to standard

statistical analysis methods, motivating Aitchison [1] to create a framework, within which

most modern methods for compositional analysis are defined. We outline these issues and

Aitchison’s methods in the following section.

2.3.1 Aitchison Simplex

A compositional observation can be represented as a constant-sum real vector with positive

components. This vector’s span is a simplex on which an alternative sample space SD can

be defined:

SD =

{
(x1, x2, ..., xD) : xi > 0 where i = 1, 2, ..., D and

D∑
i=1

xi = κ

}
(2.2)

It is within this space that [1] defines the Aitchison Distance (Section 2.2.3). Herein each

composition is considered an equivalency class and any two compositions Y and Z are

considered equivalent if Y = λZ for any λ > 0.

The vector operation assigning the constant sum representation of compositional observa-

tions is called closure and is denoted by C[.]:

C[x1, x2, ..., xD] =

[
x1∑D
i=1 xi

,
x2∑D
i=1 xi

, ...,
xD∑D
i=1 xi

]
(2.3)

A subcomposition is defined as any re-closed subset of the components of a composition.
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Within this compositional sample space [1] stipulated that valid operators preserve the

following properties:

• Scale Invariance: A composition carries only relative information, that being given

by the ratios between sub-components. Consequently a composition scaled by any

positive constant is considered equivalent to the original.

• Permutation Invariance: A function is permutation-invariant if it yields the same

result when the ordering of the components is changed. This is generally the case

for unordered compositions.

• Subcompositional Coherence: Subcompositional coherence demands that infer-

ences regarding a composition will be consistent with inferences regarding a subcom-

position thereof with respect to the ratios of corresponding components. A subcom-

positionally coherent method would derive the same conclusions on a composition

as it would for a sub-composition thereof.

2.3.2 Issues with Compositional Data

As early as 1897, Pearson [19] identified an issue with what he called spurious correlations,

when indices of the form w1/w3 and w2/w3 are compared. Although w1, w2, and w3

may be independent, the common denominator correlates the indices. In the context of

compositional data, one would expect this issue to be even more prevalent since the closure

operator (Equation 2.3) introduces ratios with common elements in the denominator as

well as a constant sum constraint on the composition components.

Aitchison [1] enumerated the following issues which invalidate the application of standard

multivariate statistical methods to compositional data:

• Negative Bias: In a D-part composition subject to the unit sum constraint, since

the covariance of any component with the sum of all components is zero and the

14



variance of the chosen component is positive, at least one of the pairwise covari-

ance terms on the left-hand-side must be negative. This means that in each row

of the standard covariance matrix, at least one entry must be negative and hence

correlations are not free to range over the usual [−1, 1] interval. That is,

x1 + . . .+ xD = 1

⇒ Cov(x1, x1 + . . .+ xD) = 0

⇒ Cov(x1, x2) + Cov(x1, x3) + . . .+ Cov(x1, xD) = −V ar(x1).

• Subcompositional Issues: Since knowledge of a composition allows us to create

any sub-composition thereof, one might expect to find some relationship between the

standard covariance matrix of a sub-composition and that of the full composition.

It is easy to confirm empirically that no such relationship exists: correlations may

vary substantially and there may be no apparent pattern.

• Basis Issues: Since the construction of a composition from a basis is a constraining

operation similar to the construction of a subcomposition, we might also expect to

see some relationship between covariance matrices of bases and compositions. Just

as the case for subcompositions, no patterns are evident.

• Singular Covariance Structures: If the covariance matrix Cov(X) is not positive-

definite then there exists some a ∈ RD such that Cov(X)a = 0. Hence

0 = a′Cov(X)a

=
∑
ij

ajCov(Xi, Xj)ai

=
∑
i

V ar(aiXi) + 2
∑
i<j

Cov(aiXi, ajXj)

= V ar(
∑
i

aiXi).

So, in general, there is some linear combination of the components of X which has

zero variance and hence is constant. By the constant-sum constraint on the Aitchison
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Simplex, this condition always holds for a = [1, 1, ..., 1] and so the covariance matrix

is not invertible.

2.3.3 Parametric Models for Compositional Data

Aitchison [1] defined several parametric models for the analysis of compositional data

with strictly positive components, including the Dirichlet distribution, the additive logistic

normal distribution, and the multiplicative logistic normal distribution.

Every Dirichlet composition can be visualized as the composition formed from a basis of

independent, equally scaled gamma-distributed components. This implies a very strong

independence structure, unlikely to be of use in describing compositions whose components

have even weak forms of dependence [1].

The additive logistic normal distribution is based on Aitchison’s additive logistic trans-

formation and its inverse, the additive log-ratio transformation. A composition p is said

to have an additive logistic normal distribution L D−1(µ, Σ) when the additive log-ratio

transformed data w, is multivariate normal:

w =

[
log

(
pk
pD

)
, . . . , log

(
pD−1
pD

)]
∼ ND−1(µ, Σ).

The inverse logistic transformation is defined as:

pk =
ewk

(ew1 + ew2 + . . .+ 1)
, k = 1, . . . , D − 1

pD = 1− w1 − ...− wd =
1

(ew1 + ew2 + . . .+ 1)
.

This pair of transformations allows one to move back and forth between the compositional
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simplex and unrestricted real space. This opens the path to transforming compositional

data into a space where standard parametric distributions and multivariate analysis meth-

ods can be used and the outcomes converted back to the original sample space.

In predator diet estimation where the number of diet components is typically large rel-

ative to sample sizes, multivariate inference procedures for a vector of parameters are

not practical and univariate methods based on marginal distributions may be more desir-

able. Because of an amalgamation property that allows marginal distributions to be easily

derived, [24] uses Aitchison’s multiplicative logistic normal distribution as the basis for

building mixture models for compositional data with essential zeros instead of the additive

logistic normal distribution.

Similarly to the additive logistic normal distribution, the multiplicative logistic normal

distribution is based on the multiplicative logistic transformation and its inverse, the mul-

tiplicative log-ratio transformation. A composition p is said to have an multiplicative

logistic normal distribution MD−1(µ, Σ) when the multiplicative log-ratio transformed

data w, is multivariate normal:

w =

[
log

(
p1

1− p1

)
, . . . , log

(
pD−1

1− p1 − . . .− pD−1

)]
∼ ND−1(µ, Σ).

The inverse logistic transformation is defined as:

pk =
ewk

[(1 + ew1) . . . (1 + ewk)]
, k = 1, . . . , D − 1

pD =
1

[(1 + ew1) . . . (1 + ewk)]

The MD−1 distribution can be extended to include a shape parameter that allows for

skewness in the transformed data. A composition p is said to have multiplicative logistic

skew-normal distribution Sk MD−1(µ, Σ, α) when:
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wk = log

(
pk

1− p1 − . . .− pk

)
∼ SN (µ, σ, α), k = 1, . . . , D − 1

where α is an (D − 1)-dimension shape parameter [3].

2.4 Modelling Compositional Data with Zeros

An essential zero in compositional data is a zero component which is not caused by round-

ing or some other difficulty in measurement. Essential zeros are defined in [15] as the

absolute absence of the part in the observation. Dealing with essential zeros is a fun-

damentally different problem than handling rounded zeros, or below-detection level zeros

which [15] define as present but below detection levels and for which multiple substitution

and imputation strategies exist. In QFASA, zeros in FA signatures are generally treated

as rounded zeros while zeros in the diet estimates are considered essential zeros as they

represent the absence of a species in the diet.

A key feature of compositional data is that the ratios of components contain all perti-

nent information about the composition. Essential zeros complicate this feature in that

they contain no information about the other components of the composition, an observa-

tion containing an essential zero being at the boundary of the simplex and technically a

composition of smaller dimensions [4].

The initial QFASA model [14] yields point estimates of diet and these usually contain

essential zeros. Inference requires modeling these diet estimates but the models outlined

in Section 2.3 cannot be used due to essential zeros and the log transformations involved

in them. A method is used in [24] for handling essential zeros using a parametric mixture

model. The strategy divides the compositions into sub-populations according to where

zeros occur in the components and specifies the distribution of the non-zero components

in each population conditional on the zero elements.

More specifically, consider the general case of p being a composition with possible zero
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components. Let V denote the vector of indices indexing the non-zero components of p

and let pV be the vector of these non-zero components. Supposing that fV (pV ) is the

density of pV , then fV (pV ) may be any density suitable for compositional data. In [24]

the multiplicative logistic normal distribution was used.

To model p it is assumed that there are separate populations for every possible value

of V. Let θv = P [V = v] be the marginal probability that an observation comes from

population with non-zero components indexed by V, where ΣB
b=1θvb

= 1 where B denotes

the number of populations.

The joint density of p and Vb can then be written:

fp,vb
(p,vb) = fp|vb

(p|vb) θvb
= fvb

(pvb
) θvb

.

Then

fp(p) = ΣB
b=1fp,vb

(p,vb) = fvp(pvp
) θvp , (2.4)

where vp is the only vb that corresponds to the non-zero components of p and such that

fp,vb
(p,vb) 6= 0. Multivariate inference procedures such as confidence regions are usually

not practical or interpretable in QFASA, where dimensions are large and sample sizes

relatively small, so univariate procedures based on the marginal distributions are used

instead. The marginal distribution of component k of p can be derived by integrating

fp,vb
(p,vb) over pj, j 6= k:

fk(pk,vb) =


θvb

if pk = 0, k /∈ vb

θvb

∫
. . .
∫
fvb

(pvb
)dp−k if 0 < pk < 1, k ∈ vb

0, otherwise.
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By reordering the composition p so that component k is in position 1 and using the

amalgamation property in [1], if k ∈ vb then:

(pk, 1− pk) ∼M (µvb
k , σ

2vb
k )

and

fk(pk) = ΣB
b=1fk(pk,vb)

= ΣB
b:k/∈vb

fk(pk,vb) + ΣB
b:k∈vb

fk(pk,vb)

=


Σb:k/∈vb

θvb
if pk = 0

Σb:k/∈vb
θvb

M (µvb
k , σ

2vb
k ) if 0 < pk < 1

0 otherwise.

Making the simplifying assumption µvb
k = µk and σ2vb

k = σ2
k ∀k such that k ∈ vb, gives a

marginal mixture distribution:

fk(pk) =


Σb:k/∈vb

θvb
if pk = 0

Σb:k∈vb
θvb

M (µk, σ
2
k) if 0 < pk < 1

0 otherwise.

Further, if we let θk = Σb:k/∈vb
θvb

then since Σb:k/∈vb
θvb

+ Σb:k∈vb
θvb

= 1, we can write the

above distribution as:

fk(pk) =


θk if pk = 0

(1− θk)M (µk, σ
2
k) if 0 < pk < 1

0, otherwise.

(2.5)
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If pk has the simplified density in Equation 2.5, [24] uses the notation below:

pk ∼ SMixM(θk, µk, σ
2
k).

In this model, we are in effect assuming that pk = 0 with probability θk and that

log [pk/(1− pk)] ∼ N (µk, σ
2
k) for pk > 0. This is called the zero-inflated logistic normal

(ZIL) distribution.

The parameters of the ZIL distribution are estimated via maximum likelihood (MLE).

Given a random sample p1k, . . . , pn′k from the distribution, where n′ denotes the number

of non-zero proportions in the sample, the MLEs are

θ̂k = (n− n′)/n

µ̂k = 1/n′Σn′

i=1log [p′ik/(1− p′ik)]

σ̂2
k = 1/n′Σn′

i=1[log [p′ik/(1− p′ik)]− µ̂k]2.

The skew extension, to the above, the zero-inflated logistic skew normal (ZILS) distribu-

tion, is as follows and requires numerical methods for parameter estimation:

fk(pk) =


θk if pk = 0

(1− θk)SkM (µk, σ
2
k, αk) if 0 < pk < 1

0 otherwise.

In [22] the use of the zero-inflated beta (ZIB) distribution [18] is examined as an alternative

to the zero-inflated distributions used in [24]. The advantage of the ZIB distribution

method is that it does not require a transformation of the original data.

The ZIB distribution defined in [18] is:
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fB(p) =

θ if p = 0

(1− θ)B(p;µ, φ) if 0 < pk < 1,
(2.6)

where B denotes the beta distribution with density function:

B(p;µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
pµφ−1(1− p)(1−µ)φ−1

and 0 < µ < 1 and φ > 0. Also E[p‖p ∈ (0, 1)] = µ and V ar[p‖p ∈ (0, 1)] = µ(1−µ)/(φ+

1).

As is the case for the other zero-inflated distributions, it can be shown that the MLE of

θ is the proportion of zeros in the sample, i.e. θ̂ = (n − n′)/n. The estimation of the

parameters µ and φ is discussed in detail in [18]. The MLEs can be obtained using the

gamlss package in R.

Subsequent recent work in [4] proposes a mixture model for handling essential zeros based

on the additive logistic transform that offers an alternative framework for multivariate

inference, albeit with certain restrictions. This work has not been extended to QFASA.

In the context of QFASA, the mean of these zero-inflated distributions is of particular

interest since it is typically close to that of the true diet [24]. In the case of the ZIB

distribution, the mean is given by β = (1 − θ)µ and is in the same space as the sample

data. In contrast, the zero-inflated logistic distributions involve a transformation of the

original data, so the resulting means must be reverted to the original sample space for

inference.

A simulation study was conducted in [22] to compare estimator performance for the ZIL,

ZILS, and ZIB distributions. The ZIL, ZILS, and ZIB distributions were fit to diet esti-

mates of simulated pseudo predators. Samples of various sizes were generated from each

distribution using distribution parameters yielding approximately equal mean and variance

for each distribution. Comparing results indicated a similar bias and variance from each
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of the distributions. Since all the distributions treat the proportion of zeros in the same

manner, only the fit of the non-zero proportions were compared. Based on a comparison

of deviance, the ZIB and ZILS models outperformed the ZIL model.

The bootstrap methods used in [24] to derive confidence intervals for true diets based on

ZIL and ZILS were extended in [22] to the ZIB distribution. A confidence interval (CI)

is an interval in parameter space with an associated confidence level that quantifies the

confidence that the true parameter value (in our case, the true diet) lies within the inter-

val. The beta.meths.CI() function in the QFASA R package implements this estimation

process. An outline of the methods is covered in Chapter 3.
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Chapter 3

Inference from QFASA

3.1 Introduction

The QFASA R package contains code to compute the confidence intervals for the true

diet, as well as testing for changes in diets. These aspects are discussed in detail in the

following sections.

3.2 Confidence Intervals

The confidence interval methods developed in [24], and subsequently in [22], are intended

for the case where the sample size of predators is small relative to the dimension of QFASA

diet estimates. The variability due to unknown biological factors such as calibration

coefficients and fat content is handled by using bootstrapping techniques.

In [22,24] confidence intervals were constructed by bootstrapping and inverting a hypoth-

esis test. In a hypothesis test we postulate that a population parameter is a certain value.

In the case of QFASA, this parameter is a prey diet proportion. This postulated value,
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the null hypothesis, defines a probability distribution, the null distribution, which is the

distribution we expect for sample statistics from the population if the null is true. The

p-value of a sample statistic is the probability, under the null distribution, of encounter-

ing a value as or more extreme than the observed sample statistic. If this probability is

lower than a predetermined significance level, the null hypothesis is rejected by the test.

The non-rejection region of a two-sided hypothesis test with significance level α can be

interpreted as a confidence interval with confidence level (1− α).

For the zero-inflated distributions used in the QFASA model to handle essential zeros,

it is difficult to derive the non-rejection region analytically so bootstrap estimation was

used in [22, 24]. Bootstrap samples 1 . . . B are generated from a specific null distribution

via parametric bootstrap and the corresponding p-value calculated as the proportion of

bootstrap samples which exceed the observed test statistic. This process is repeated

iteratively to find the parameter values which bound the non-rejection region.

In the case of the QFASA R package, we first use a non-parametric bootstrap (section

3.2.1) to estimate nuisance parameters in the ZIB distribution, followed by a parametric

bootstrap in which estimates are generated from the ZIB null distribution (section 3.2.2).

3.2.1 Non-parametric Bootstrap

The bootstrapping p-value algorithm consists of an initial non-parametric bootstrap in

which the nuisance parameters φk and θk in Equation 2.6 are estimated. More specifically,

these are estimated by generating many pseudo-predators, estimating their diet, and es-

timating these parameters for the bootstrap sample. While the bootstrapping could be

repeated a number of times to account for variability in the nuisance parameters due to

variance in predators, the process is computationally intensive as is and [24] anticipates

that the results would not differ significantly.
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3.2.2 Parametric Bootstrap

Ignoring the variability due to the prey, we assume that p(Y, µX) ≈ p(Y, X̄) where µX =

E[X̄] so our diet estimates may be considered independent. Based on the assumption that

our estimates pk,1(Y1,µX), . . . , pk,ns(Yns ,µX) have a ZIB distribution (equation 2.6), we

derive confidence intervals for estimates of each species proportion k by inverting the

hypothesis test

H0 : βk = βk0

H1 : βk 6= βk0

where βk = (1− θk)µk is the mean of the ZIB distribution, which we assume to be close to

the true diet proportion. A subsequent adjustment is made to bootstrap CIs to compensate

for the difference between βk and the true diet proportion, a process described in section

3.2.3. The bootstrap procedure is as follows:

1. Given estimates of θ and φ from the non-parametric bootstrap, θboot and φboot respec-

tively, pick values of βk0 over the interval [0, 1] and for each value of βk0, calculate

µk0 =
βk0

(1− θboot)
.

(a) GenerateB bootstrap samples of the test statistic and for each bootstrap sample

b = 1 . . . B calculate T ∗b as follows:

i. Generate p∗k,1, . . . , p
∗
k,n∗ from distribution B(p;µk0, φboot) and calculate MLE

µ̂∗k0.

ii. Calculate β̂∗k0 = (1− θboot)µ̂∗k0
iii. Calculate T ∗b = ‖β̂∗k0 − βk0‖

(b) Calculate the bootstrap p-value corresponding to βk0 as the proportion of boot-
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strap samples of T ∗b which are greater than T = ‖β̂k − βk0‖, where β̂k is calcu-

lated from the sample proportions pk,1, . . . , pk,n:

p∗(βk0) =
1

B

B∑
b=1

I{T ∗b >T}.

2. Numerically solve for the roots of p∗(βk0) − α = 0, the upper and lower limits of

(1− α) 100% confidence interval, say β∗Lk0 and β∗Uk0 .

In [22, 24], the roots in Step 2 are solved by a custom bisection process. We have sub-

sequently replaced this by a built-in R bisection method as part of the improvements

made in the QFASA R package implementation. A detailed description of the change and

simulation results comparing the two methods are given in Section 4.4.1.

3.2.3 Bias

If we generate many pseudo-predators with true diet π and estimate each of their diets

using QFASA, the average of these diet estimates, say β, is not π. We call the difference

between β and π the bias of our estimator. Stewart et al. [24] cites possible sources of this

bias to include the similarity between the FA signatures of certain species in the diet, the

choice of FA subsets in the QFASA model, and the estimated FA calibration coefficients

and prey fat content.

The confidence intervals derived in [24] are shifted by an estimate of the bias. The algo-

rithm involves generating pseudo-predators from each estimate of diet for the ns predators

in our sample. From each of the ns sets of pseudo-predators, we calculate the value of

β̂k for k = 1, . . . , I. The difference between the true diet and estimated parameter values

is computed for each predator and the ns estimates of bias are averaged, resulting in an

estimate of bias for each prey species.
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3.3 Testing for Differences in Compositional Data

Detecting changes in predator diets is an important ecological problem. QFASA estab-

lishes a link between FA signatures of predators and their diets. Consequently, changes

in these FA signatures can be used to infer changes in diet. [23, 25] devised a method to

test for a difference between compositional data with zeros which can be applied directly

to predator FA signatures or diet estimates. In this case, p-values are obtained by multi-

variate permutation tests with a test statistic based on CS distance. These methods are

implemented in the following functions in our QFASA R package:

• testfordiff()

• testfordiff.ind.boot.fun()

• create.d.mat()

• chisq.CA()

• testfordiff.ind.pval
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Chapter 4

QFASA R Package

4.1 Overview

In this chapter we describe the implementation of our R package encapsulating and ex-

tending QFASA functions from [22–24]. We detail additions to the original source code

required to create the package and satisfy the Comprehensive R Archive Network (CRAN)

submission process. We go into detail regarding optimizations added to leverage third-

party root finding tools and multicore processors. We also review a complementary R

package, qfasar, which leverages the same underlying theories but with a more specific

focus on conducting predator simulations and diagnosing goodness-of-fit of diet estimates.

4.2 The R Language

R [21] is a software environment for statistical computing and graphics. It first appeared

in the early 1990s as a free open source implementation of the S language which was

developed in the 1970’s at Bell Laboratories by John Chambers and colleagues. Today it

boasts a diverse and highly active community of core language maintainers and package
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Figure 4.1: KDNuggets Analytics, Data Science, Machine Learning Software Poll 2016-
2018

developers, and is one of the primary tools used today in the fields of data science and

statistical analysis. The R user and development community is highly active, with new

language features, improvements, and extensions being continually added.

Figure 4.1 shows results of a 2016 survey [20] by KDNuggets, a datascience community

portal, in which R is a top language tool favoured by self proclaimed data scientists.

However, it is interesting to note that adoption of the Python language in this community

is growing faster and considered at this point to have surpassed R. It is unclear whether

this is due to users switching tools or more people from software engineering, where Python

is prevalent, calling themselves Data Scientists and Analysts [20].

The capabilities of R are extended through user-created packages. These packages are

developed primarily in R, and sometimes in Java, C, C++, and Fortran. The R packaging
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system is also used to organise and distribute research data in a systematic way for sharing

and archiving.

A core set of packages is included with the base installation of R and more than 11,000

additional packages are available from CRAN, a network of file and web servers around

the world that store identical, up-to-date, versions of base R and packages. CRAN fol-

lows the CTAN (Comprehensive TeX Archive Network) distibution model. CTAN is the

authoritative place where TEX related material and software can be found for download.

The R manual [27] for creating a new package is a 180+ page document. It is highly

prescriptive with respect to how code is to be structured and arranged into directories

as well as minimal standards for documenting functions and data included in the new

package. The goal of the specification is to create high quality additions that work as

intended in new environments and uphold the quality of the platform.

4.3 R Packages

An R package is not required to distribute R code. R code is most commonly shared

as individual scripts. When code or data are to be shared to a wide audience which will

typically use the software unsupported, it becomes worthwhile to spend the effort to create

a package which encapsulates all code, documentation, examples, and data sets required

to use the new functions or methods. A package can also include information regarding

what other R packages it uses and these will be automatically installed by the package

manager when the package is installed.

Distributing R code as a package is particularly useful where the target audience is non-

technical and will easily abandon the process of trying to use the new code if there are

any errors which occur. This was a key motivating factor for the creation of the QFASA

package. The QFASA package allows supporting software to be distributed and upgraded

in a modular and repeatable way with a low technical burden on the user.
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4.3.1 CRAN

Although R packages can be distributed independent of CRAN, CRAN provides a consis-

tent and easy to use interface for distribution and installation. The submission process is

stringent but the requirements generally promote good practice in documentation, testing,

and software engineering. We describe the submission process in more detail in Section

4.5.

When packages are accepted to CRAN they are automatically propagated to all mirror

sites. How quickly this happens depends on the refresh schedules of the individual mirrors.

There is a well documented [26] and easy to follow process for setting up a CRAN mirror

site. Dalhousie University in Halifax is currently a CRAN mirror.

Also, packages are versioned and separate versions maintained on CRAN. Users can select

specific versions of the package from the archive or seamlessly upgrade to the latest version

available.

4.3.2 Package Structure

Devtools [29] is an R package created to abstract many of the lower level details of creating

an R package and to encapsulate many best practices. Devtools can be used directly via the

R shell but integrates well with RStudio, a graphical user interface to the R environment.

That said, regardless of whether Devtools or RStudio is used, the underlying process of

creating a package is the same [28]. The Devtools package was used extensively in the

creation of the QFASA package.

Package source code can be zipped up and distributed as a bundled package. However,

if you want to distribute your package to an R user who does not have the development

tools installed required to compile the package, you need to compile the package source

code into a binary package. A binary package is required for distribution via CRAN. Like

a bundled package, a binary package is a single compressed file, However the contents are
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different from a source package:

• R source files are compiled into three files that store the parsed functions in an

efficient format. This has the result as loading the source code into an R environment

and then saving the functions with save().

• A meta/ directory contains a number of Rds files which contain cached metadata

about the package. These files help to make package loading faster by storing the

results of costly computations.

• An html/ directory contains the files needed for HTML help.

• Native source code in src/, if any, is compiled into 32-bit and 64-bit libraries and

stored in i386/ and x64/ respectively.

The contents of the meta/, html/, i386/, and x64/ directories are generated by the

package development toolchain. Binary packages are platform specific and must generally

be created separately for each platform on which they are to be used.

Figure 4.2 provides code and output showing how a template package directory structure

can be created using devtools::create(). This creates template files and directories:

• DESCRIPTION: package metadata, including authors, licensing, and dependen-

cies.

• NAMESPACE: defines the R namespace within which the package functions will

be defined in order to avoid conflicts with other package and the R base functions.

• R/: R source files.

• devtools.Rproj: a text file that integrates the created structure with RStudio,

making it aware of the project structure and the artifacts therein.
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devtools::create("~/tmp/QFASA")

## Package: QFASA

## Title: What the Package Does (one line, title case)

## Version: 0.0.0.9000

## Authors@R: person("First", "Last", email = "first.last@example.com", role = c("aut", "cre"))

## Description: What the package does (one paragraph).

## Depends: R (>= 3.5.1)

## License: What license is it under?

## Encoding: UTF-8

## LazyData: true

## Writing 'QFASA.Rproj'

## Adding '.Rproj.user' to '.gitignore'

## Adding '^QFASA\\.Rproj$', '^\\.Rproj\\.user$' to '.Rbuildignore'

dir("~/tmp/QFASA")

## [1] "DESCRIPTION" "NAMESPACE" "QFASA.Rproj" "R"

Figure 4.2: Creating a package template with Devtools

4.3.3 R Code

There is no shortage of recommendations on conventions for R coding style, variable nam-

ing, function naming etc. The R package manual is non-prescriptive in this sense and any

working code can be packaged. However it is probably a good idea to adopt at least some

convention as these usually help in the long run and are usually the result of past mistakes

made by other developers that you can hopefully avoid.

Also there are tools available to make writing well formatted and structured code easier.

The following packages have functions which can be used for this purpose:

• Formatr: will clean up poorly formatted code itself [32].

• Lintr: will produce warnings and recommendations where code does not fit a defined

style but leaves actual fixing of issues to the programmer [13].

Style components include variable naming, indentation, spacing, line length, code com-
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ment, and positioning of braces to demarcate code blocks.

In general, packages should avoid adjusting global options and parameters that affect the

environment as a whole. This includes things like options(digits=n) to set the number

of significant digits to display when printing numeric values, and par(mfrow = c(2,2)) to

set the layout for plots. If set, these options persist for the session. If necessary, packages

should always restore options and parameters to their original values when done.

If packages introduce new environment options, they should be prefixed with the package

name to prevent conflict with existing options.

Changing the working directory is considered poor form and should be avoided or changed

back as soon as possible. Changing the working directory using setwd() within a package

function can cause unexpected behaviour for the user.

Where it is necessary to initialize a package before use, such as setting up a connection

to an external system, packages can use the onLoad() and onAttach() function hooks.

Also, packages can use onUnLoad() to clean up and release any resources that are no

longer needed.

4.3.4 Metadata

The DESCRIPTION file stores important metadata about your package. This includes:

• Title and Description: the title is a one-line description of the package and the

Description field a more detailed overview.

• Author: identifies contributors to the package, their email addresses and their

different roles. The main roles are creator or maintainer, author, contributors, and

copyright holders. The email address of the creator role will be used by CRAN to

contact you about your package.
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• License: If you want to release your package on CRAN, you must choose a standard

software license. Otherwise it is difficult for CRAN to determine whether or not it

is legal to distribute your package. The most common licenses are MIT, GPL-2, and

Creative Commons:

– MIT is a simple and permissive template license, stipulating only that redis-

tribution of the software in any form also include the given license. This is the

license under which the QFASA package has been released.

– GPL-2 is a copy-left license in that it requires that any derived work also be

distributed under the GPL-2 license.

– Creative Commons relinquishes any rights you have to the package and ef-

fectively puts it in the public domain.

• Dependencies: the packages necessary for your package to work: Packages listed

in Imports field must be present for your package to work. Any time your package is

installed those packages, if not already present, will be installed on your computer.

The QFASA package requires the Rsolnp, boot, and grid packages. Packages listed

in the Suggests field are used by your package but it does not require them to work.

These are not automatically installed with your package.

• Version: required so that users can identify which release of your package they

are using and whether they require an upgrade to have access to the latest features

and/or fixes. Also, within the R package management system, packages depend

on other packages. Being able to specify exactly which version of a dependency a

package requires is essential to maintaining a stable analysis environment.

The information contained in the DESCRIPTION file is used by CRAN to publish the

package on their Web archive. A DESCRIPTION file for the QFASA R package is shown

in Figure 4.3 and the corresponding CRAN page in Figure 4.4.
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Package: MyPackage

Title: My R Package

Version: 1.0.2

Authors@R: c(person("Connie", "Stewart", email = ...)

Description: Accurate estimates of the diets of predators are required

in many areas of ecology, ...

Depends:

R (>= 3.2)

License: MIT + file LICENSE

Encoding: UTF-8

LazyData: true

Imports: Rsolnp, grid, boot

RoxygenNote: 5.0.1

VignetteBuilder: rmarkdown, knitr

Figure 4.3: DESCRIPTION file for QFASA package

Figure 4.4: CRAN web page generated from package metadata
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4.3.5 Documentation

Object documentation is the information accessed by the help() function in R. This type

of documentation is typically used as a reference to determine the arguments taken by

different functions in your package and how the arguments affect behaviour and outputs.

R provides a standard way of documenting the objects and functions in a package: you

write .Rd files in the man/ directory. These files use a custom syntax, loosely based on

LATEX and rendered to HTML, plain text, and PDF for viewing.

Instead of writing documentation explicitly, the Devtools package can be used to streamline

the process. Devtools uses a markup system called Roxygen2 [30] which dynamically

inspects objects and functions in your package and generates documentation augmented

by markup comments. It is based on Doxygen, a tool for generating documentation from

annotated C++ sources.

Roxygen2 comments start with # and come before a function. All Roxygen2 lines before

a function are called a block. See Figure 4.5 which shows the block of comments before

the function AIT.dist in the QFASA R package. Blocks are broken into tags which are

are defined for a wide variety of information types:

• @param defines a function parameter.

• @return defines the type of value returned by the function.

• @example sample code demonstrating the use of the function.

• @seealso reference to other functions similar to this function.

• @references references to other documentation.

The code and markup in Figure 4.5 becomes part of the QFASA package documentation

accessible in R via the help() function as per Figure 4.6.
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#' Returns the distance between two compositional vectors using Aitchison's

#' distance measure.

#'

#' @export

#' @param x.1 compositional vector

#' @param x.2 compositional vector

#'

#' @references Aitchison, J., (1992) On criteria for measures of

#' compositional difference. Mathematical Geology, 24(4), pp.365-379.

#' @references Stewart, C. (2016) An approach to measure distance between compositional

#' diet estimates containing essential zeros. Journal of Applied Statistics,

#' 10.1080/02664763.2016.119384.

#'

AIT.dist <- function(x.1, x.2) {
return(sqrt(sum((log(x.1/mean.geometric(x.1)) - log(x.2/mean.geometric(x.2)))^2)))

}

Figure 4.5: Roxygen markup tags on package function

> library(QFASA)

> help(AIT.dist)

AIT.dist package:QFASA R Documentation

Description:

Returns the distance between two compositional vectors using Aitchison's

distance measure.

Usage:

AIT.dist(x.1, x.2)

Arguments:

x.1: compositional vector

x.2: compositional vector

References:

Aitchison, J., (1992) On criteria for measures of compositional

difference. Mathematical Geology, 24(4), pp.365-379.

Stewart, C. (2016) An approach to measure distance between

compositional diet estimates containing essential zeros. Journal

of Applied Statistics, 10.1080/02664763.2016.119384.

Figure 4.6: Roxygen function comments available via help() function
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4.3.6 Vignettes

A vignette is a long-form guide to using your package. It is like a chapter in a book or

an academic paper. A vignette should divide functions into useful categories and how to

co-ordinate multiple functions to solve problems. Vignettes are also useful if you want to

explain the implementation details of your package.

Before R 3.0.0 the only way to create a vignette was with a tool included with the R base

package called Sweave which works with LATEX. Now a package can provide a reference to

a vignette engine for turning files into HTML or PDF format. A commonly used vignette

engine is RMarkdown [2]. This is a very lightweight markup language, not as powerful as

LATEX or DocBook but very easy to write and to read even in raw form.

Another tool, Knitr [31], allows vignette documentation to intermingle text and actual

R code results. Knitr takes R code, executes it, captures the output, and translates it

into formatted Markdown. This also allows the inclusion of plots and figures directly into

vignettes.

Figure 4.7 shows a portion of a vignette source in RMarkdown from the QFASA R package.

The header section contains meta-data regarding how the document is to be formatted

and the body uses RMarkdown to define headings and other style elements. The rendered

vignette from CRAN is shown in Figure 4.8.

4.3.7 Testing

Testing is a software engineering best practice for repeatable delivery of reliable software.

To automate software testing, code is written to test functionality and performance of a

software unit, in our case an R package.

Automated testing explicitly defines a process which a programmer usually performs infor-

mally anyway. The effort expended in writing the test code is amortized over the lifetime

of the project and usually pays back quickly. The tests serve as a check that any changes
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---

title: "Modeling Workflow"

author: "Shelley Lang"

date: "`r Sys.Date()`"

output: rmarkdown::html_vignette

vignette:

%\VignetteIndexEntry{Modeling Workflow}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}

---

```{r, eval=TRUE}
library(QFASA)

```

# Modeling Inputs

Prior to starting make sure that:

* Fatty acid names in all files are the same (contain the exact same

numbers/characters and punctuation).

* There are no fatty acids in the prey file that do not appear in

the predator file and visa versa.

Figure 4.7: Portion of vignette markup for the QFASA package

Figure 4.8: Part of the QFASA vignette on CRAN
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test_that("Aitchison Distance Measure", {

x.1 <- c(1, 1, 1, 1, 1)

x.2 <- c(2, 99, 99, 99, 99)

expect_equal(QFASA:::AIT.dist(x.1, x.2), 3.49003, tolerance = 1e-06)

x.3 <- c(1, 1, 1, 1, 1)

x.4 <- c(0, 0, 0, 0, 0)

expect_equal(is.nan(QFASA:::AIT.dist(x.3, x.4)), TRUE)

})

Figure 4.9: Definition of testthat test function

made to a package implementation have not broken any existing functionality and that

new functionality is implemented correctly. Since the tests are automated in this way

they can be run often with almost no extra effort. Many tools exist to support automated

testing in a variety of programming languages viz: JUnit for Java and pytest for Python.

The Devtools framework provides a wrapper around the testthat package for easy inclu-

sion of test cases into a package. The workflow is generally to create a test file in the

tests/testthat/ directory. Its name must begin with test and it contains test that dec-

larations which set up a test context and then apply assertions against the result to pass

or fail the test. All test cases defined in the package will be executed by calling function

devtools::test().

Figure 4.9 shows sample test cases for the Aitchison distance measure function,

QFASA::AIT.dist() (see Figure 4.5). In the first case we check that the distance between

vectors x.1 and x.2 is equal to the expected result, 3.49003, within a tolerance of 1e-6.

The second test case checks that the distance function applied to x.3 and x.4, a zero

vector, is undefined (is.nan()).

Figure 4.10 shows the results of executing the test cases defined in Figure 4.9 using the

devtools::test() function. The first test case fails since the result is not within the

tolerance of the expected result.
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> devtools::test()

Loading QFASA

Testing QFASA

1.........

Failed -------------------------------------------------------------------------

1. Failure: Aitchison Distance Measure (@testAIT.R#5) ------------------------

QFASA:::AIT.dist(x.1, x.2) not equal to 3.49003.

1/1 mismatches

[1] 7.45e-16 - 3.49 == -3.49

DONE ===========================================================================

Figure 4.10: Execution of testthat test function

4.3.8 Namespaces

Namespacing helps you to avoid conflicting variables and functions in your package with

those defined in other packages. It involves specifying explicitly what functions and vari-

ables are available in your package. An example of conflicting packages is the dplyr and

stats packages which both implement a filter() function. Using these packages together

requires that the conflicting function be prefixed with its package name (dplyr::filter()

and stats::filter()).

The NAMESPACE file is used in a package definition to define the namespace thereof. It

can be created by hand but using Roxygen2 markup simplifies the process. Inline with

object documentation, functions can be tagged in their comments as being exported by a

package using the @export tag (see Figure 4.5). This makes code more readable in that

it is clear from the code itself what functions are available to users of the package.

4.3.9 Other Components

Other components that can be included in a package structure are:

• data/ external data you want to distribute with the package. This may include
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sample datasets, results of experiments, or possibly data used by automated tests.

The following data sets are included the in the QFASA R package:

– CC: sample calibration coefficients.

– FAset: sample list of fatty acids.

– predatorFAs: sample predator fatty acid signatures.

– preyFAs: sample prey database.

• src/ source code for package components implemented in compiled languages such

as C/C++ or Fortran. This is usually done for performance reasons or to leverage

a functionality in a native library such as GPU accelerated linear algebra methods.

• inst/ any other files you want to have installed along with your package. This might

include documentation, graphics files, or Java code.

• exec/ executable scripts.

• tools/ miscellaneous tools.

4.4 QFASA

To create the QFASA R package, code created in support of [14,22–25], and related papers,

was re-organized and annotated to conform with the expected structure of an R package

detailed in the previous sections of this chapter. The application programming interface

(API) implemented by the package is detailed in Appendix A. This function-level docu-

mentation was generated automatically as part of the package from Roxygen2 annotations

in the source code itself. This is the same QFASA package documentation accessible in R

via the help() function as per Figure 4.6.

Version 1.0.0 of the QFASA R package that we released to CRAN contained functions

to support the original implementation [14]. The main function, p.QFASA(), calculated

point estimates of predator diets from a prey FA database and predator FA samples. The
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compatible distance functions, AIT, KL, and CS, were also implemented as part of this

release.

Versions 1.0.1 and 1.0.2 included some minor bug fixes to the original package which came

to light after the package was distributed to biologists and researchers performing QFASA

diet estimations.

Version 1.0.3 (unreleased) added three groups of functions:

• Estimating confidence intervals using ZIB distribution (see Section 3.2):

– beta.meths.CI()

– bias.all()

– prey.cluster()

• Simulations (see Section 2.2.5):

– gen.pseudo.seals()

• Comparison of diet estimates and tests for detecting dietary (see Section 3.3):

– testfordiff()

– testfordiff.ind.boot.fun()

– create.d.mat()

– chisq.CA()

– testfordiff.ind.pval

In addition to restructuring the QFASA code, a significant effort was spent improving the

implementation of the original confidence interval code. These improvements mostly dealt

with optimizing the runtime of inference functions. These optimizations fall into one of

two main categories, root-finding and parallelization which we detail in Sections 4.4.1 and

4.4.2.
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4.4.1 Finding Roots

Because the mixture model used in QFASA to handle essential zeros does not yield a

closed-form solution for deriving confidence intervals, bootstrap methods are used instead.

As described in Section 3.2.2, this involves finding roots of p∗(βk0) − α = 0. In [22], a

custom bisection method was used to find these roots. This custom method was replaced

in the R package by the built-in uniroot function. In our application, root solving is com-

putationally expensive and reducing the number of iterations required has a considerable

impact on the time taken to estimate confidence intervals. Using uniroot reduced the

number of iterations required to converge. Also, leveraging third-party packages for com-

mon algorithms allows us to abstract their implementation and focus on the particulars of

our specific domain problem. Any improvements or bug fixes in these packages are easily

absorbed into our work by upgrading the package in question. In both the original root

finding implementation and uniroot, the interval to be searched for a single root is passed

as an argument.

To compare confidence intervals obtained with the original bisection method compared

to those obtained using uniroot, we conducted a simulation study. We generated 10

pseudo-predators using prey sampled from the prey database used in [22] and diet 1

defined in the same study (see Table 4.1), estimated the diet proportions using the QFASA

model and obtained individual 95% confidence intervals for each species using ZIB. In the

non-parametric bootstrap, 100 pseudo-predators were generated to estimate ZIB nuisance

parameters. This process was repeated 1000 times. The results of this study (see Table 4.1

and 4.2) indicate that uniroot intervals are generally narrower and have better coverage

than the original bisection method. Note that in this simulation calibration coefficients

and fat content were not used so we would expect coverage probabilities to be lower in

practice.
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Table 4.1: Simulation 95% CIs average widths by prey species

species uniroot bisect true diet (diet 1)
Cod 0.242 0.339 0.300
Haddock 0.281 0.413 0.300
Plaice 0.356 0.348 0.025
Pollock 0.128 0.193 0.150
Sandlance 0.106 0.117 0.025
SilverHake 0.122 0.153 0.150
WinterFlounder 0.158 0.165 0.025
Yellowtail 0.188 0.195 0.025

Table 4.2: Simulation 95% CIs coverage proportions by prey species

species uniroot bisect true diet (diet 1)
Cod 1.00 1.00 0.300
Haddock 1.00 1.00 0.300
Plaice 1.00 0.99 0.025
Pollock 1.00 0.43 0.150
Sandlance 1.00 0.82 0.025
SilverHake 1.00 0.80 0.150
WinterFlounder 1.00 0.76 0.025
Yellowtail 0.99 0.81 0.025
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4.4.2 Parallelization

The bootstrap process described in Section 4.4.1 is embarrassingly parallel, meaning little

to no effort is required to separate the task into a number of independent sub-tasks that

can execute concurrently. From a computing perspective, such tasks can easily make use

of multiple CPU cores, achieving close to linear speedup in ideal cases.

Conveniently, the R bootstrap package is able to exploit a multi-core processor via a par-

allel cluster of processes. These processes are managed via the parallel package. The

parallel::makeCluster() function starts a cluster with the specified number of child

processes which is then used to perform bootstrap tasks in parallel.

A test was conducted in which we repeatedly performed the CI estimation described in

Section 4.4.1 on different numbers of processor cores. For this purpose an AWS EC2

m4.4xlarge instance was used with 16 cores virtualized on a 2.4 GHz Intel Xeon E5-2676

v3 processor 64 GB RAM.

Figure 4.11 shows execution time as a fraction of the time taken to execute on a single

processor core, plotted against the number of cores and bootstrap replicants. As is evident

from the figure, execution time is reduced as the number cores increases. For 1000 para-

metric bootstrap replicants the speedup is significant, with execution time halving as the

number of processors is doubled, and diminishing returns as we scale beyond eight pro-

cessor cores. The parallelization effect is much less marked for 100 replicants. In general,

saturation will occur as the overall task becomes less computationally bound.

4.5 CRAN Submission

If your intent is to release your package to CRAN, R provides tools for automatic checking

of all the components covered so far. When your package is submitted to CRAN, their

servers will execute the same set of checks as a first step before moving the release candidate

along to the next phase. Devtools provides a helpful wrapper for the R checks as well as
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Figure 4.11: QFASA confidence interval estimation execution time as a fraction of the
time taken to execute on a singel core
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implementing additional verification that may cause issues with CRAN.

The checks may result in ERRORS and WARNINGS, which must be fixed before submis-

sion to CRAN, and NOTES, mild issues which may or may not be accepted by CRAN.

Finally, the package is built without errors or warnings, typically using devtools:build()

and submitted to CRAN using devtools::release().

You will be notified within a few minutes that the package has been received and usually

within an hour whether it has passed the CRAN automated checks. If not, the package is

rejected and you must address the issues listed and retry. Minor issues will be passed on

to a CRAN staff member who will email you directly regarding next steps.

CRAN is staffed by volunteers who all have other full-time jobs. In a typical week there

will be hundreds of submissions and only a handful of volunteers to process them all.

The less work you make for them, the more likely you are to have a pleasant submission

experience [28].

Upon acceptance, your package will be available on the CRAN website and propagated to

mirrors with a day or two.

4.6 qfasar R package

The qfasar R package [5] is a collection of 19 functions which support published QFASA

research as well as unpublished procedures intended for research support. The package

was published after our QFASA R package and encompasses:

• Data preparation functions to validate and clean model inputs.

• Diet estimation functions using the Aitchison [25], Kullback–Liebler [14], or Chi-

squared distances [25]. This functionality mirrors that provided by p.QFASA() in

the QFASA R package.
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• Diagnostic functions to assess the performance of a prey library using prey-on-prey

simulations without calibration coefficients. This involves splitting prey-type data

into two subsets and using cross validation to estimate the attribution of the leave-

out group to its own type. The idea is that the degree to which estimates for a prey

group are attributed to that type measures its distinctiveness within the library.

Misallocation between types is indicative of prey the model may have difficulty dis-

tinguishing. In principle this is a similar process to the clustering of prey libraries

in [24] demonstrated in Section 2.2.5 but can be used to assess the impact on QFASA.

• Diagnostic functions to assess goodness-of-fit of the predator diet estimate model.

This diagnostic is based on the notion that the minimized distance of each preda-

tor, a byproduct of diet estimation, will be small when the fitted model explains

the observed data well, and larger otherwise. The package implements a normalized

goodness-of-fit metric (unpublished) based on comparing these distances to a sim-

ulated maximum-variance null distribution for each predator’s minimized distance

measure.

• Functions to support predator simulation.

The package does not perform inference on diet estimates and does not handle essential

zeros. Download numbers from CRAN for both packages are compared in Figure 4.12 and,

apart from a large spike for qfasar in early 2017, were found to be very similar though

this data does indicate which of the packages were actually used.
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Figure 4.12: CRAN downloads of QFASA versus qfasar packages
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Chapter 5

Conclusion

QFASA is an established and widely used technique used by biologists and ecologists

to estimate predator diets. A body of source code has accummulated since the original

study but has mostly been distributed piecemeal and updates and fixes not consistently

distributed to the user community.

The primary contribution of this project was to package R source code created in support

of [14, 22–25] and related papers into a FOSS module available on CRAN and to make

improvements both in terms of execution speed and accuracy.

We have described the process of diet estimation via the QFASA methodology and reviewed

some of the underlying statistical methodologies. We have detailed the R packaging process

and our interaction with CRAN to publish the package. We described our implementation

of parallel computing methods to improve the speed and efficiency of model inference by

making use of multi-core processors. Finally, we also reviewed, for comparison, a similar

QFASA module [5].
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Appendix A

QFASA R Package version 1.0.3

QFASA QFASA: A package for Quantitative Fatty Acid Signature Anal-
ysis

Description

Accurate estimates of the diets of predators are required in many areas of ecology, but
for many species current methods are imprecise, limited to the last meal, and often
biased. The diversity of fatty acids and their patterns in organisms, coupled with
the narrow limitations on their biosynthesis, properties of digestion in monogastric
animals, and the prevalence of large storage reservoirs of lipid in many predators, led
us to propose the use of quantitative fatty acid signature analysis (QFASA) to study
predator diets.
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AIT.dist Returns the distance between two compositional vectors using
Aitchison’s distance measure.

Description

Returns the distance between two compositional vectors using Aitchison’s distance
measure.

Usage

AIT.dist(x.1, x.2)

Arguments

x.1 compositional vector

x.2 compositional vector

References

Aitchison, J., (1992) On criteria for measures of compositional difference. Mathemat-
ical Geology, 24(4), pp.365-379.

Connie Stewart (2017) An approach to measure distance between compositional diet
estimates containing essential zeros, Journal of Applied Statistics, 44:7, 1137-1152,
DOI: 10.1080/02664763.2016.1193846
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AIT.more Used to provide additional information on various model com-
ponents evaluated at the optimal solution, i.e., using the
QFASA diet estimates and Aitchison distance measure.

Description

Used to provide additional information on various model components evaluated at the
optimal solution, i.e., using the QFASA diet estimates and Aitchison distance measure.

Usage

AIT.more(alpha, predator, prey.quantiles)

Arguments

alpha compositional QFASA diet estimate.

predator fatty acid signature of predator.
prey.quantiles

matrix of fatty acid signatures of prey. Each row contains an individual
prey signature from a different species.

AIT.obj Used in solnp() as the objective function to be minimized when
Aitchison distance measure is chosen.

Description

Used in solnp() as the objective function to be minimized when Aitchison distance
measure is chosen.
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Usage

AIT.obj(alpha, predator, prey.quantiles)

Arguments

alpha vector over which minimization takes place.

predator fatty acid signature of predator.

prey.quantiles

matrix of fatty acid signatures of prey. Each row contains an individual
prey signature from a different species.

beta.meths.CI Returns individual confidence intervals and simultaneous confi-
dence intervals based on the zero-inflated beta distribution (not
bias corrected - see note below).

Description

For details see: Stewart, C. (2013) Zero-Inflated Beta Distribution for Modeling the
Proportions in Quantitative Fatty Acid Signature Analysis. Journal of Applied Statis-
tics, 40(5), 985-992.

Usage

beta.meths.CI(predator.mat, prey.mat, cal.mat, dist.meas, noise, nprey,

R.p, R.ps, R, p.mat, alpha, FC, ext.fa)

Arguments

predator.mat

matrix containing the fatty acid signatures of the predators.
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prey.mat prey database. A dataframe with first column a Species label and other
columns fatty acid proportions. Fatty acid proportions are composi-
tional.

cal.mat matrix of calibration coefficients of predators. Each column corresponds
to a different predator. At least one calibration coefficient vector must
be supplied.

dist.meas distance measure to use for estimation: 1=KL, 2=AIT or 3=CS

noise proportion of noise to include in the simulation.

nprey number of prey to sample from the the prey database when generating
pseudo-predators for the nuisance parameter estimation.

R.p number of beta diet distributions to generate for the nuisance parame-
ters.

R.ps number of pseudo predators to generate when estimating nuisance pa-
rameters.

R number of bootstrap replicates to use when generating p-values for con-
fidence interval estimation.

p.mat matrix of predator diet estimates for which we are trying to find confi-
dence interavls.

alpha confidence interval confidence level.

FC vector of prey fat content. Note that this vector is passed to the
gen.pseudo.seals() which expects fat content values for individual
prey samples while pseaudo.seal() and p.QFASA() expect a species
average.

ext.fa subset of fatty acids to be used to obtain QFASA diet estimates.

Details

Note:

• These intervals are biased and should be corrected using the output from bias.all().

• CI.L.1 and CI.U.1 contain the simultaneous confidence intervals.

• Slow because of bisection and lots of repetition.

• Need to replace p.prey with p.QFASA() eventually but just use p.prey() for now.
Use example where we estimate a single predator diet to compare the estimates
from each method.
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Value

Individual confidence intervals and simultaneous confidence intervals based on the zero-
inflated beta distribution. These intervals are biased and should be corrected using
the output from bias.all(). ci.l.1 and ci.u.1 contain the simultaneous confidence
intervals.

References

Stewart, C. (2013) Zero-inflated beta distribution for modeling the proportions in
quantitative fatty acid signature analysis. Journal of Applied Statistics, 40(5), 985-
992.

Examples

## Fatty Acids

data(FAset)

fa.set = as.vector(unlist(FAset))

## Predators

data(predatorFAs)

tombstone.info = predatorFAs[,1:4]

predator.matrix = predatorFAs[,5:(ncol(predatorFAs))]

npredators = nrow(predator.matrix)

## Prey

data(preyFAs)

prey.sub=(preyFAs[,4:(ncol(preyFAs))])[fa.set]

prey.sub=prey.sub/apply(prey.sub,1,sum)

group=as.vector(preyFAs$Species)

prey.matrix=cbind(group,prey.sub)

prey.matrix=MEANmeth(prey.matrix)

# Diet estimate

diet.est <- p.QFASA(predator.mat = predator.matrix,

prey.mat = prey.db.summarized,.matrix,

cal.mat = rep(1, nrow(FAset)),

dist.meas = 2,
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ext.fa = colnames(prey.db.summarized))[['Diet Estimates']]

# Confidence intervals

ci = beta.meths.CI(predator.mat = predator.matrix,

prey.mat = prey.matrix,

cal.mat = rep(1, nrow(FAset)),

dist.meas = 2,

noise = 0,

nprey = 50,

R.p = 1,

R.ps = 10,

R = 10,

p.mat = diet.est,

alpha = 0.05,

FC = rep(1, nrow(prey.db)),

ext.fa = FAset$FA)

# Bias correction

bias <- bias.all(p.mat = diet.est,

prey.mat = prey.matrix,

cal.mat = as.matrix(rep(1, nrow(FAset))),

fat.cont = rep(1, nrow(prey.db)),

R.bias = 10,

noise = 0,

nprey = 50,

specify.noise = rep(FALSE, nspecies),

dist.meas = 2,

ext.fa = FAset$FA)

# SIMULTANEOUS CONFIDENCE INTERVALS:

# LOWER LIMIT

ci[[1]] - bias[3,]

# UPPER LIMIT

ci[[2]] - bias[3,]
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bias.all Calculate bias correction for confidence intervals from
beta.meths.CI().

Description

Calculate bias correction for confidence intervals from beta.meths.CI().

Usage

bias.all(p.mat, prey.mat, cal.mat, fat.cont, R.bias, noise, nprey,

specify.noise, dist.meas, ext.fa = ext.common.fa.list)

Arguments

p.mat matrix containing the fatty acid signatures of the predators.

prey.mat matrix containing a representative fatty acid signature

cal.mat matrix of calibration factors where the i th column is to be used with the
i th predator. If modelling is to be done without calibration coefficients,
simply pass a vector or matrix of ones.

fat.cont prey fat content

R.bias botstrap replicates

noise noise

nprey number of prey

specify.noise

noise

dist.meas distance measure

ext.fa subset of FA’s to use.

Value

Row 1 is Lambda CI, row 2 is Lambda skew, and row 3 is Beta CI
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CC Fatty acid calibration coefficients.

Description

Fatty acid calibration coefficients.

Usage

CC

Format

A data frame with 66 observations and 2 variables:

FA fatty acid names

CC calibration coefficient for corresponding fatty acid

chisq.CA Called by create.d.mat() to compute the chi-square distance.

Description

Called by create.d.mat() to compute the chi-square distance.

Usage

chisq.CA(x1, x2)
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Arguments

x1 vector

x2 vector

chisq.dist Returns the distance between two compositional vectors using
the chi-square distance.

Description

Returns the distance between two compositional vectors using the chi-square distance.

Usage

chisq.dist(x.1, x.2, gamma)

Arguments

x.1 compositional vector

x.2 compositional vector

gamma power transform taken to be 1.

References

Stewart, C., Iverson, S. and Field, C. (2014) Testing for a change in diet using fatty
acid signatures. Environmental and Ecological Statistics 21, pp. 775-792.

Connie Stewart (2017) An approach to measure distance between compositional diet
estimates containing essential zeros, Journal of Applied Statistics, 44:7, 1137-1152,
DOI: 10.1080/02664763.2016.1193846
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CS.more Used to provide additional information on various model com-
ponents evaluated at the optimal solution, i.e., using the
QFASA diet estimates and chi-square distance measure.

Description

Used to provide additional information on various model components evaluated at the
optimal solution, i.e., using the QFASA diet estimates and chi-square distance measure.

Usage

CS.more(alpha, predator, prey.quantiles, gamma)

Arguments

alpha compositional QFASA diet estimate.

predator fatty acid signature of predator.

prey.quantiles

matrix of fatty acid signatures of prey. Each row contains an individual
prey signature from a different species.

gamma power transform exponent (see chisq.dist()).

CS.obj Used in solnp() as the objective function to be minimized when
chi-square distance measure is chosen. Unlike AIT.obj() and
KL.obj(), does not require modifying zeros.
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Description

Used in solnp() as the objective function to be minimized when chi-square distance
measure is chosen. Unlike AIT.obj() and KL.obj(), does not require modifying zeros.

Usage

CS.obj(alpha, predator, prey.quantiles, gamma)

Arguments

alpha vector over which minimization takes place.

predator fatty acid signature of predator.

prey.quantiles

matrix of fatty acid signatures of prey. Each row contains an individual
prey signature from a different species.

gamma power transform exponent (see chisq.dist()).

create.d.mat Called by testfordiff.ind.boot.fun() to create a matrix of
distances.

Description

Called by testfordiff.ind.boot.fun() to create a matrix of distances.

Usage

create.d.mat(Y.1, Y.2)
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Arguments

Y.1 vector

Y.2 vector

FAset List of fatty acids used in sample prey and predator data sets,
preyFAs and predatorFAs respectively.

Description

List of fatty acids used in sample prey and predator data sets, preyFAs and predatorFAs

respectively.

Usage

FAset

Format

A data frame with 39 observations and 1 variable:

FA Fatty acid name
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KL.dist Returns the distance between two compositional vectors using
Kullback–Leibler distance measure.

Description

Returns the distance between two compositional vectors using Kullback–Leibler dis-
tance measure.

Usage

KL.dist(x.1, x.2)

Arguments

x.1 compositional vector

x.2 compositional vector

References

S.J. Iverson, C. Field, W.D. Bowen, and W. Blanchard (2004) Quantitative fatty acid
signature analysis: A new method of estimating predator diets, Ecological Monographs
72, pp. 211-235.

KL.more Used to provide additional information on various model com-
ponents evaluated at the optimal solution, i.e., using the
QFASA diet estimates and Kullback-Leibler distance measure.
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Description

Used to provide additional information on various model components evaluated at the
optimal solution, i.e., using the QFASA diet estimates and Kullback-Leibler distance
measure.

Usage

KL.more(alpha, predator, prey.quantiles)

Arguments

alpha compositional QFASA diet estimate.

predator fatty acid signature of predator.

prey.quantiles

matrix of fatty acid signatures of prey. Each row contains an individual
prey signature from a different species.

KL.obj Used in solnp() as the objective function to be minimized when
Kullback–Leibler distance measure is chosen.

Description

Used in solnp() as the objective function to be minimized when Kullback–Leibler
distance measure is chosen.

Usage

KL.obj(alpha, predator, prey.quantiles)
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Arguments

alpha vector over which minimization takes place.

predator fatty acid signature of predator.

prey.quantiles

matrix of fatty acid signatures of prey. Each row contains an individual
prey signature from a different species.

MEANmeth Returns the multivariate mean FA signature of each prey group
entered into the QFASA model. Result can be passed to
prey.mat in p.QFASA().

Description

Returns the multivariate mean FA signature of each prey group entered into the QFASA
model. Result can be passed to prey.mat in p.QFASA().

Usage

MEANmeth(prey.mat)

Arguments

prey.mat matrix containing the FA signatures of the prey. The first column
indexes the prey group.
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p.QFASA Computes the diet estimate for each predator in seal.mat using
either the Kullback-Leibler Distance (KL), the Aitchison Dis-
tance (AIT) or the Chi-Square Distance (CS).

Description

Computes the diet estimate for each predator in seal.mat using either the Kullback-
Leibler Distance (KL), the Aitchison Distance (AIT) or the Chi-Square Distance (CS).

Usage

p.QFASA(predator.mat, prey.mat, cal.mat, dist.meas, gamma = 1,

FC = rep(1, nrow(prey.mat)), start.val = rep(0.99999,

nrow(prey.mat)), ext.fa)

Arguments

predator.mat

matrix containing the FA signatures of the predators.

prey.mat matrix containing a representative FA signature from each prey group
(usually the mean). The first column must index the prey group.

cal.mat matrix of calibration factors where the i th column is to be used with the
i th predator. If modelling is to be done without calibration coefficients,
simply pass a vector or matrix of ones.

dist.meas distance measure to use for estimation: 1=KL, 2=AIT or 3=CS

gamma parameter required for calculations using CS distance (passed to CS.obj).
Currently being set to 1.

FC vector of fat content

start.val initial vector of parameters to be optimized

ext.fa subset of fatty acids to be used to obtain QFASA diet estimates.
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Value

a list with components:

Diet Estimates

A matrix of the diet estimates for each predator where each row corre-
sponds to a predator and the columns to prey species. The estimates
are expressed as proportions summing to one.

Additional Measures

For each predator for which a diet estimate was obtained:

ModFAS the value of the modelled fatty acid (i.e., after CCs have been applied
and the fatty acids subsetted and renormalised over the designated fatty
acid set). These are expressed as proportions summing to one.

DistCont The contribution of each fatty acid to the final minimized distance.

PropDistCont

The contribution of each fatty acid to the final minimized distance as
a proportion of the total.

MinDist The final minimized distance.

Examples

## Fatty Acids

data(FAset)

fa.set = as.vector(unlist(FAset))

## Predators

data(predatorFAs)

tombstone.info = predatorFAs[,1:4]

predator.matrix = predatorFAs[,5:(ncol(predatorFAs))]

npredators = nrow(predator.matrix)

## Prey

data(preyFAs)

prey.sub=(preyFAs[,4:(ncol(preyFAs))])[fa.set]

prey.sub=prey.sub/apply(prey.sub,1,sum)

group=as.vector(preyFAs$Species)

prey.matrix=cbind(group,prey.sub)

prey.matrix=MEANmeth(prey.matrix)
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FC = preyFAs[,c(2,3)]

FC = as.vector(tapply(FC$lipid,FC$Species,mean,na.rm=TRUE))

## Calibration Coefficients

data(CC)

cal.vec = CC[,2]

cal.mat = replicate(npredators, cal.vec)

# Run QFASA

Q = p.QFASA(predator.matrix,

prey.matrix,

cal.mat,

dist.meas=1,

gamma=1,

FC,

start.val = rep(1,nrow(prey.matrix)),

fa.set)

prey.cluster This function performs a hierarchical cluster analysis of prey
fatty acid signatures using a matrix of dissimilarities for the n
objects being clustered. Initially, each object is assigned as its
own cluster and then the algorithm proceeds iteratively, at each
stage joining the two most similar clusters, until there is just a
single cluster.

Description

This function performs a hierarchical cluster analysis of prey fatty acid signatures using
a matrix of dissimilarities for the n objects being clustered. Initially, each object is
assigned as its own cluster and then the algorithm proceeds iteratively, at each stage
joining the two most similar clusters, until there is just a single cluster.
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Usage

prey.cluster(prey.fa, method, FUN)

Arguments

prey.fa data frame of prey fatty acid signature samples. Species column is
used to group samples. Other columns are assumed to be fatty acid
proportions.

method the agglomeration method to be used. This should be one of 'single',
'complete', 'average', 'median', 'centroid'.

FUN distance function

Value

an object of class hclust which describes the tree produced by the clustering process.

pseudo.pred Generate a pseudo predator by sampling with replacement from
prey database.

Description

Note: if preysize=1, then one prey is selecting from each species. otherwise, a sample
of size n k (number of species k) is sampled with replacement.

Usage

pseudo.pred(diet, preybase, cal.vec, fat.vec, preysize = 2)
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Arguments

diet compositional vector of proportions that sums to one. Length is equal
to the number of prey species.

preybase prey database with first column providing the species name.

cal.vec vector of calibration coefficients.

fat.vec vector of fat content whose length is the same as the number of species.

Value

a simulated predator FA signature

Examples

data(preyFAs)

p.mat <- matrix(rep(NA,100*11),nrow=100)

for (i in 1: 100) {

my.seal <- pseudo.pred(rep(1/11,11),

preyFAs[,-c(1,3)],

rep(1,ncol(preyFAs[,-c(1,3)])-1),

rep(1,11))

p.mat[i,] <- p.QFASA(my.seal,

MEANmeth(preyFAs[,-c(1,3)]),

rep(1,length(my.seal)),

2,

ext.fa=colnames(preyFAs[,-c(1:3)]))$`Diet Estimates`

}

# Average diet estimate

round(apply(p.mat,2,mean),3)

QFASA.const.eqn Returns sum(alpha) and used in solnp().
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Description

Returns sum(alpha) and used in solnp().

Usage

QFASA.const.eqn(alpha, predator, prey.quantiles, gamma)

Arguments

alpha vector over which minimization takes place.

predator fatty acid signature of predator.

prey.quantiles

matrix of fatty acid signatures of prey. Each row contains an individual
prey signature from a different species.

gamma power transform exponent (see chisq.dist).

split.prey Splits prey database into a simulation set (1/3) and a modelling
set (2/3). If number of samples of a prey type is less than or
equal to 5, then prey.mod and prey.sim are duplicated instead
of split.

Description

Splits prey database into a simulation set (1/3) and a modelling set (2/3). If number
of samples of a prey type is less than or equal to 5, then prey.mod and prey.sim are
duplicated instead of split.
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Usage

## S3 method for class 'prey'

split(prey.mat)

Arguments

prey.mat matrix of individual prey fatty acid signatures where the first column
denotes the prey type

Value

list of simulation prey database and modelling prey database.

testfordiff.ind.boot

Called by testfordiff.ind.pval().

Description

Called by testfordiff.ind.pval().

Usage

testfordiff.ind.boot(data, ns1, R)

Arguments

data sample of compositional data

ns1 sample size of compdata.1

R number of bootstrap samples. default is 500.
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testfordiff.ind.boot.fun

Called by testfordiff.ind.boot().

Description

Called by testfordiff.ind.boot().

Usage

testfordiff.ind.boot.fun(data, i, ns1, change.zero = 1e-05)

Arguments

data sample of compositional data

i

ns1 sample size of compdata.1

change.zero

testfordiff.ind.pval

Test for a difference between two independent samples of com-
positional data. Zeros of any type are allowed.

Description

Test for a difference between two independent samples of compositional data. Zeros of
any type are allowed.
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Usage

testfordiff.ind.pval(compdata.1, compdata.2, ns1, R = 500)

Arguments

compdata.1 sample of compositional data.

compdata.2 sample of compositional data.

ns1 sample size of compdata.1.

R number of bootstrap samples, default is 500.

Value

p-value obtained through a multivariate permutation test with test statistic based on
chi-square distances.

References

Stewart, C., Iverson, S. and Field, C. (2014) Testing for a change in diet using fatty
acid signatures. Environmental and Ecological Statistics 21, pp. 775-792.

Examples

## Prey

data(preyFAs)

## Capelin FA sig

capelin.sig=preyFAs[preyFAs$Species=="capelin",4:(ncol(preyFAs))]

capelin.sig=capelin.sig/apply(capelin.sig,1,sum)

## Sandlance FA sig

sandlance.sig=preyFAs[preyFAs$Species=="sandlance",4:(ncol(preyFAs))]

sandlance.sig=sandlance.sig/apply(sandlance.sig,1,sum)

82



## Run testfordiff.ind.pval.1

testfordiff.ind.pval(as.matrix(capelin.sig),

as.matrix(sandlance.sig),

nrow(capelin.sig))
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