
An Efficient Dynamic Key Management Scheme for IoT

Devices

by

Vishnu Prasanth Vikraman Pillai

Bachelor of Technology in Computer Science and Engineering,
Mahatma Gandhi University, 2006

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

Master of Computer Science

In the Graduate Academic Unit of Computer Science

Supervisor: Rongxing Lu, Ph.D., Faculty of Computer Science
Examining Board: Haruna Isah, Ph.D., Faculty of Computer Science,

Zhen Lei, Ph.D., Department of Civil Engineering, Chair
Sajjad Dadkhah, Ph.D., Faculty of Computer Science

This thesis is accepted by the
Dean of Graduate Studies

THE UNIVERSITY OF NEW BRUNSWICK

October, 2023

© Vishnu Prasanth Vikraman Pillai, 2023

Abstract

The Internet of Things or IoT is a collective term for electronic devices with comput-

ing and connectivity. Our proposed dynamic key management scheme is designed

for secure group communication of IoT devices. It offers efficient key distribution

for a small to medium group of devices in domains such as centralized healthcare

systems. Our key management scheme ensures forward secrecy, backward secrecy,

and key independence in group communication. The scheme uses binary heap trees

and bloom filters for efficient storage, organize and verification of secret keys. It uses

polynomial coefficients secured with modular arithmetic to distribute the keys. The

proposed implementation of the scheme uses lightweight mathematical operations

such as XOR, multiplication, string concatenations, and hashing for devices having

limited computing capabilities. The thesis is concluded with the performance anal-

ysis of the scheme that demonstrates the suitability of the scheme with similar IoT

group communication schemes.

ii

Dedication

I present this thesis as a homage to those individuals who have significantly shaped

the course of my journey up to this juncture. My deep gratitude extends to my

mother, father, sister, teachers, friends, and even compassionate strangers who have

offered steadfast support and nurturing throughout the expedition of my life. I also

recognize the challenges posed by adversaries, which have fueled my aspirations for

greater heights. It’s undeniable that without your persistent encouragement and

reminders, the achievements I’ve attained would have eluded me.

iii

Acknowledgements

I want to express my earnest appreciation to Dr. Rongxing Lu, my supervisor, for

his unwavering support, time, and dedication to his students. Dr. Lu’s efforts have

helped me reshape my technical knowledge and professional values, for which I am

forever grateful. I wish to express sincere thanks for the exceptional guidance pro-

vided by Dr. Kalikinkar Mandal in his role as an instructor. I extend my gratitude to

Dr. Ali Ghorbani from the Canadian Institute of Cybersecurity for his endorsement

and to Mohammad Mamun from National Research Council, Canada, for his indis-

pensable mentorship. My heartfelt thanks also go to my family for their support. I

sincerely convey my gratitude to the University of New Brunswick for providing me

with this invaluable opportunity. I would also like to thank the university staff for

their devoted efforts.

iv

Table of Contents

Abstract ii

Dedication iii

Acknowledgments iv

Table of Contents v

List of Tables ix

List of Figures x

Abbreviations xi

1 Introduction 1

1.1 Overview of IoT Key Management 1

1.2 Motivation and Vision . 4

1.3 A Brief Overview of Contributions 5

1.4 Assumptions Made During Design . 6

1.5 Thesis Organization . 6

2 Background and Related Works 8

2.1 Cryptography . 8

2.2 Encryption . 10

2.2.1 Encryption Keys . 10

v

2.2.2 Symmetric Encryption . 10

2.2.3 Asymmetric Encryption . 11

2.3 Key Management . 11

2.3.1 Key Generation . 12

2.3.2 Key Storage . 12

2.3.3 Key Distribution . 12

2.3.4 Key Revocation . 13

2.3.5 Dynamic Key Management 13

2.4 Related Work . 14

3 Models and Design Goals 17

3.1 System Model . 17

3.1.1 IoT Devices . 18

3.1.2 Gateway Server . 19

3.1.3 Communication Group . 19

3.2 Security Model . 20

3.2.1 Forward Secrecy: . 20

3.2.2 Backward Secrecy: . 20

3.2.3 Key Independence: . 21

3.3 Design Goals . 21

3.3.1 Security . 21

3.3.2 Efficiency . 21

4 Preliminaries 22

4.1 Hashing . 22

4.2 Bloom Filter . 23

4.2.1 Bloom Filter Construction . 23

4.2.2 Storing Elements in BF . 24

vi

4.2.3 Querying Elements in BF . 24

4.2.4 Controlling the False Positiveness of a BF 25

4.3 Polynomial Functions . 26

4.3.1 Polynomial-based Access Control Technique 26

5 The Proposed Scheme 27

5.1 System Initialization . 27

5.2 Group Key Update When a New Device Joins the Group 29

5.3 Group Key Update When a Device Leaves the Group 31

6 Security Analysis 35

6.1 Backward Security . 35

6.2 Forward Security . 36

6.3 Key Independence . 36

7 Performance Evaluation 38

7.1 Performance Comparison . 38

7.2 Execution Results . 39

7.2.1 CPU Usage . 40

8 Conclusions and Future Works 43

8.1 Conclusion . 43

8.2 Future Work . 44

Bibliography 50

A Code 51

A.1 AES.Java . 51

A.2 BloomFilter.java . 54

A.3 Device.java . 56

vii

A.4 Gateway.java . 59

A.5 Keymanager.java . 62

Vita

viii

List of Tables

7.1 Comparison of the storage overhead of the three schemes 39

7.2 Comparison of the number of re-keying messages and the size of each

message after join/leave . 39

ix

List of Figures

1.1 Impact of rekeying in a group. 3

3.1 An IoT device group under consideration of the key management system 18

4.1 An example of BF with H = 3, where mx,my ∈ M, mw /∈ M, but

BFCheck(A,H, w) = 1. 25

5.1 A sample key tree with N = 8 and n = 6. The device D2 will be

assigned the key set (k[9], k[4], k[2], k[1]). 28

5.2 Example: The new member D7 receives keys (k[14], k[7], k[3], k[1]). . 30

5.3 The new member D5 receives keys (k[12], k[6], k[3], k[1]). 31

5.4 Example: The new member D7 receives keys (k[14], k[7], k[3], k[1]). . 32

7.1 Time consumption while devices join the group. 41

7.2 Time consumption while devices leave the group. 41

x

Abbreviations

IoT Internet of Things
KDC Key Distribution Center
LKH Logical Key Hierarchy
GKMP Group Key Management Protocol
PKI Public Key Encryption
PAC Polynomial based Access Control Technique
AES Advanced Encryption Standard
ts, t Timestamp
µs Microseconds

xi

Chapter 1

Introduction

1.1 Overview of IoT Key Management

The pervasive influence of technology in nearly every aspect of human life represents

one of the most profound contemporary societal transformations. The recent tech-

nological advances that made digital devices relatively smaller in size, mobile, and

low cost, spawned a new era of computing in a connected environment with smart

devices. The increased dependency on smart devices rendered the dire need to collec-

tively address and manage their operations. The involvement of smart devices can be

witnessed in diverse application domains [36] including transportation, healthcare,

smart homes, and agriculture, and more. This new era of computing in a connected

environment of smart devices is christened the Internet of Things or IoT. While any

device with computing and connectivity capabilities can be referred to as IoT, it

is typically considered that they have low computing capabilities and operate with

limited power sources, such as built-in batteries, as seen in devices like smartwatches.

It transformed the social sphere with interactive, assistive, informative, and engag-

ing technologies. The advent of IoT also influenced conventional industrial systems,

initiated Industry 4.0, and extended the IoT world to include Industrial IoT or IIoT.

1

Among the many infrastructure enablers of IoT devices, the layer of security is a

fundamental entity that establishes trust among a diverse group of communicating

devices. As the mobility of IoT devices is becoming a central theme in the new era

of automation [42] across various industries handling information, addressing the se-

curity of IoT devices has become a new challenge. The anticipated ubiquitousness of

IoT devices prompted us to envision an algorithm that aligns with the sustainability

goals of the near future. Our research is the continuation of a set of key management

methods proposed in the early days of the Internet (detailed in the related works

section), a period when algorithms had to be designed for efficiency owing to the

limited availability of computers with high computing capabilities. While selecting

the desirable features of an existing design, our method further optimizes the effi-

ciency of the referenced methods to suit the dynamicity and real-time requirements

of IoT devices.

Data encryption techniques are the de facto solution for securing data in communica-

tion. A variety of symmetric encryption techniques are present with proven security

and efficiency. Security of the encryption techniques is dependent on how securely

the keys are stored and exchanged. The survey by Deogirikar et al. lists a diverse

set of attacks on IoT devices due to the leakage of encryption keys [13]. An efficient

key management framework is quintessential to ensure the security of IoT devices. A

good key management system should limit the access of both keys and the encrypted

messages only to its intended recipients for the intended duration. This is ensured

by the timely allocation and revocation of session keys. While denying access to

unintended recipients, an efficient key ownership method should also mitigate the

collusion risk from the excluded users by making the keys random and independent

of each other. The major challenge of symmetric key encryption schemes is the lack

of efficient methods for key exchange or rekeying 1.

1Replacing encryption keys with new ones.

2

Gateway

𝐷4

𝐷5

𝐷6

𝐷7
𝐷1

𝐷2

𝐷3

𝐺𝑟𝑜𝑢𝑝 𝐵𝑒𝑓𝑜𝑟𝑒 𝑟𝑒𝑘𝑒𝑦𝑖𝑛𝑔

𝑐𝑜𝑙𝑜𝑟 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑣𝑒 𝑘𝑒𝑦

Gateway

𝐷4

𝐷5

𝐷6

𝐷7
𝐷3

𝐷2

𝐷1

𝐺𝑟𝑜𝑢𝑝 𝐴𝑓𝑡𝑒𝑟 𝑟𝑒𝑘𝑒𝑦𝑖𝑛𝑔

𝐷5

𝐺 = {𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5, 𝐷6, 𝐷7}
𝐺′ = {𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5, 𝐷6, 𝐷7}

Figure 1.1: Impact of rekeying in a group.

Rekeying methods securely exchange new keys and dynamically create communi-

cation groups within a set of trusted devices. The figure 1.1 shows how rekeying

transforms the group G to G ′ dynamically and removes the device D5 from the set

of devices {D1, D2, · · · , D7}.

The Diffie-Hellman key exchange scheme is a popular and secure symmetric key

exchange system. However, it is not a suitable option for a key management system

because it cannot be generalized for use in group communication involving more than

two members [7]. Another reason to ignore Diffie-Hellman for IoT communications

is that is designed for communication among devices with equally high computing

capabilities. A typical IoT group communication scenario involves a server with high

computational power on one side and many small, low-energy devices on the other

side possessing low computational power. A popular key exchange technique is the

exchange of encrypted symmetric keys using asymmetric encryption. This technique

also involves mathematical exponential operations for large numbers at the receiving

end and hence, is not the right fit for IoT devices built for lightweight computations

only. The paper by Masanobu Katagi et al. from the Sony Corporation [23] explains

why lightweight frameworks are the best choice for IoT device security.

3

1.2 Motivation and Vision

The world is grappling with climate change due to greenhouse gas emissions, with

an increasingly significant share of computers and other digital devices. Alternatives

are sought for reducing the carbon footprint in urban transportation, farming, and

energy production as well as in various digital ecosystems. Efficient energy con-

sumption is one of the best-proven ways to reduce the carbon footprint. In a world

where computing is indispensable, the pathway for energy efficiency is the use of

green algorithms [26]. One such example is the replacement of the proof-of-work

algorithm with the proof-of-stake algorithm in the blockchain-based cryptocurrency

Ethereum in 2021, which had a colossal impact on the Environment [48]. Integra-

tion of this algorithm based on the proposition by Sunny King et al. [24] resulted in

substantial energy savings. This became a significant motivation that influenced the

objectives of our research. Another motivation for our research was the increasing

demand for privacy in recent times. The recent surge in devices handling personal

data introduced various challenges related to privacy and security. Strong security

measures are crucial when dealing with a smartphone containing banking informa-

tion, whereas a smartwatch connected to social media should ensure privacy by not

divulging sensitive health data about the user. The emergence of IoT devices in

healthcare is a desirable but vulnerable transformation as it can compromise the pri-

vacy of individuals and related security concerns. [14] highlights a third of security

breaches among IoT devices happen in the healthcare industry. Nuances in handling

individual health data with forward and backward secrecy is a detailed research area

[35]. As a result, there is a growing need for reliable, resilient, and robust secu-

rity frameworks around handling the security and privacy of the information being

exchanged.

4

1.3 A Brief Overview of Contributions

We suggest a dynamic key management system that is practical, efficient, and can

exchange keys with minimal communication. The proposed method is a lightweight

algorithm that can find applications in fast-paced environments involving trusted

IoT device groups. It is suitable for group rekeying and scalable without significantly

reducing performance. It has the following features.

• It is an efficient method designed to securely exchange encryption keys in a

private network of smart devices ranging from a dozen to a few hundred. It

offers forward security and backward security to the data shared by devices

based on group membership.

• Our method incorporates many mathematical primitives to achieve security,

speed, and low computational and communication expenses, the primary design

goals. It uses logical key hierarchies [17] to group devices based on session keys,

and uses polynomial coefficients with modular arithmetic.

• Our technique uses Bloom Filter [3] for validating faster validation of probable

keys with the server. Timestamps are concatenated with every exchanged

message to better defend against attacks, and hashing is used in communication

to reduce the exposure of original key values.

• Reducing the number of communications for rekeying with scenario-based com-

munication methods is another feature of the proposed method. The least ef-

ficient communication method in a group is unicasting. In our method, the

unicast situations are replaced with multicast scenarios by categorizing differ-

ent use cases and addressing them. We leverage the parent-child relationship

among keys in the hierarchical organization by using the XOR operation to de-

rive new keys of individual devices instead of unicasting them from the Gateway

5

server.

• Our design takes into consideration issues in group key management such as

collusion attacks. Wallner et al document various possible attacks in multicast

scenarios and recommend hierarchical solutions for key management [47].

1.4 Assumptions Made During Design

There are several assumptions consciously made while writing this thesis that helped

us focus on our key management scheme. The scheme assumes that the devices in the

group are already authenticated by a protocol such as TLS [46] and protected against

any masquerading attacks. The proposed protocol neither focuses on the authoriza-

tion of devices over active communication channels nor access rights on archived

communications. The proposition relies on the established security principles of

symmetric key encryption and the frameworks available for security in communica-

tion. The scheme primarily focuses on theoretical efficiency and does not address

other potential adversarial factors that may impact performance. The limitations of

this research are exempt from detailing how the scheme is secured against general

security vulnerabilities [51].

1.5 Thesis Organization

After this introductory chapter, the thesis provides a detailed view of cryptographic

fundamentals and related works in Chapter 2. The system model outline that de-

scribes the structure of the proposal and design goals can be found in Chapter 3.

Chapter 4 explains the preliminaries of our scheme that are mandatory in under-

standing the proposed scheme detailed in Chapter 5. Chapter 6 analyzes the security

aspects of the scheme and defends the security goals proposed in Chapter 3. The

6

performance of the scheme measured after its implementation in Java is presented

in Chapter 7. Chapter 8 concludes the thesis with our remarks, observations, and

potential future works related to dynamic key management.

7

Chapter 2

Background and Related Works

This chapter presents a brief overview of the necessity of cryptography fundamentals

and its relevance in the communication of IoT devices.

2.1 Cryptography

Cryptography is an active applied research field employed in securing digital data

against adversaries using mathematical techniques. In cryptography, the data that

needs securing is known as plaintext. The encrypted data is called ciphertext and

can be transferred securely to any intended recipient through open channels. The

received ciphertext is made legible by a legitimate receiver using a method known

as decryption. The encryption and decryption methods are not secured and are

available to anyone. The security in the transformation from plaintext to ciphertext

is established with a secret number known as the key. The content is accessible only

to those who possess the key.

The digital data may exist in a state of rest, in use, or in transit [12]. The most

vulnerable state for digital data is when it is in transit. While modern electronic

inventions made communications efficient for the data in the digital form, the ad-

vancements in computing increased the capability of successful interception of digital

8

communications, especially for the Internet of Things (IoT) devices, thus raising a

need for enhanced protection for the data in transit [28] and the availability of de-

vices involved. Hence, the attempt to leverage modern cryptography to guard digital

communication among IoT devices started [19]. Modern cryptography for data in

transit is shaped around a few fundamental security goals listed below.

• Confidentiality: To limit the data access to an intended group of users. Data

Confidentiality is an important aspect of IoT devices deployed in scenarios that

handle sensitive data. The data can be personal information, healthcare data,

critical industrial data and so on.

• Integrity: Integrity offers verifiable techniques to ensure unauthorized parties

have not modified the data. The digital signature is a popular technique for

ensuring integrity in the digital world. The IoT devices handling data use a

variety of solutions ranging from hashing and message authentication code to

Blockchain [27] for ensuring the integrity of communication.

• Availability: Availability is the time-bound assurance of resources. Availabil-

ity aims to achieve the reliability of the systems in service. This can involve

guarding the infrastructure against possible disruptions, unplanned downtime,

and deniability of access. Different measures for availability include redun-

dancy, disaster recovery plan, and fault monitoring. Availability is a crucial

security goal for systems that rely on real-time data from IoT devices.

• Authentication: It’s essential to ensure the entities involved in a communica-

tion are known and verified. Authentication procedures provide a verification

mechanism for access or communication endpoints. There are various ways

to authenticate, such as usernames and passwords, electronic and biometric

IDs, and multifactor authentication(MFA). Authentication is an integral part

of access control.

9

2.2 Encryption

The secure exchange of data over a communication channel requires cryptography

that involves a set of 3 algorithms -an encryption algorithm to encode the infor-

mation, a decryption algorithm to decode the information, and a key generation

algorithm to generate keys whose possession controls the access to specific encryp-

tion or decryption. The data to be encrypted is termed plaintext, and the encrypted

data is known as ciphertext. The ciphertext results from 3 components, the plain

text, the algorithm, and a secure parameter known as the key.

2.2.1 Encryption Keys

Encryption keys are an integral part of cryptography. The age-old principle from the

19th century that is still relevant in cryptography, known as Kerckhoff’s principle

[31], emphasizes the security of encryption to be dependent on the key rather than

the algorithm used for encryption. The keys are pivotal in encryption, and hence,

the security of the encryption often translates to how securely the keys are handled.

The encryption techniques are widely grouped into two based on the nature of the

keys.

2.2.2 Symmetric Encryption

This type of encryption technique uses a shared key for encryption and decryption.

Advanced Encryption Standard, abbreviated as AES [9] is the most popular sym-

metric encryption technique and is also the example chosen in our proposal due to

the abundance of research available on its efficiency on IoT devices [32] and [21].

Other symmetric encryption techniques include DES [8] and PRESENT cipher [4].

Our method suggests using the widely used AES symmetric encryption technique to

secure communications in a public network. This thesis uses the following notations

10

for encryption and decryption of data with AES using the secure session key ki ∈ K.

The equation 2.1 shows an example of how AES algorithms are used.

AESEncryption(data, ki) = ciphertext

AESDecryption(ciphertext, ki) = data

(2.1)

2.2.3 Asymmetric Encryption

Asymmetric Encryption uses a pair of two different keys, unlike symmetric encryp-

tion, which uses just one key for both encryption and decryption operations. Though

distinct, the keys in the pair are not random but are related mathematically. The

intended recipient of encrypted messages is responsible for creating this pair of keys,

of which one key will be advertised among entities that the recipient is interested

in engaging in communication. Asymmetric encryption is a popular authentication

mechanism for Web 3.0 in the form of certificates and digital signatures. The draw-

back of asymmetric encryption is the requirement of heavy computing using modular

arithmetic, making it less desirable for encrypting communication where low-energy

devices are involved. Asymmetric encryption still finds its use in the encryption and

exchange of symmetric keys.

2.3 Key Management

Key management refers to the lifecycle management of secure keys, including key

generation, key storage, key distribution, usage, and expiry of the secure keys used

in symmetric encryption. Key managing typically involves a set of algorithms that

decides how keys are generated, how symmetric keys are transferred to the intended

recipients, how they are stored, and how they are disposed of. The nuances in

handling keys are identified and independently addressed using key management de-

11

pending on the use case. The book titled Cryptographic Key Management Issues and

Challenges in Cloud Services [6] details the diverse aspects of key management. It

includes authentication, authorization of users and devices, protection of command

and data from spoofing, integrity to communication by defending against unautho-

rized modifications, protection of keys from unauthorized disclosure, and outlines the

security requirement of the size of the keys to be used. Key management is a vast

topic. While we expect a secure key management system to meet all the mentioned

criteria, our proposal only addresses a focused part of how keys are distributed and

expired in a resource-constrained network.

2.3.1 Key Generation

Depending upon the algorithms we use, keys are generated in various ways. This

thesis mentions how our technique generates AES symmetric encryption keys for

consumption. Two different methods are adopted for the AES key generation. The

first method uses an AES key generation algorithm API. The second method involves

XOR operation between existing AES keys to create new AES keys.

2.3.2 Key Storage

Various hardware and software methods are available for secure storage of keys.

This includes hardware security modules, ”Software-based” key stores or vaults, and

trusted platforms. Key storage is beyond the scope of our proposal and not addressed

in this thesis.

2.3.3 Key Distribution

Key distribution ensures the safe transfer of keys from one device to another. Various

key distribution techniques are present in addition to those mentioned earlier. Our

12

proposed method uses two types of key distributions - a secure channel key transfer

and an encrypted transfer with known keys.

2.3.4 Key Revocation

Revocation or disposal of the keys is required to deny entities access to future com-

munications. In our proposed method, the key revocation is done by creating new

keys that will expire the old keys.

2.3.5 Dynamic Key Management

Dynamic key management is key management in a continuously changing group en-

vironment called dynamic groups where authenticated devices are given temporary

access to resources, as opposed to static groups where no devices join or leave the

group during the group’s lifetime. We follow the detailed definition of static and dy-

namic groups proposed in the Polynomial interpolation-based group communication

scheme proposed by Purushothama et al. [39]. This scenario comes in various dy-

namic networks. Among the mobile devices forming networks, they are collectively

called Mobile Ad-hoc Networks or MANET [30]. While computer networks made

distributed computing possible [34] and shaped the world of network security, the

feature of mobility has made the networks dynamic [38] and introduced the need for

the real-time managing of computing devices in networks. The security vulnerabil-

ity is intrinsic to dynamic networks and requires the incorporation of dynamicity in

the associated security layer. The inherent uniqueness in various types of dynamic

networks contributed to a diverse set of security solutions, many detailed by Kuhn

et al. [25]. For the sake of brevity, our thesis will focus on the dynamic key manage-

ment alone and will not delve into the intricacies of the dynamicity of networks. For

solutions that involve symmetric cryptography, dynamic key management became

an integral component of information security in dynamic networks. The objective

13

of dynamic key management is to effectively manage secure communication channels

with the timely distribution and revocation of encryption keys. A detailed survey

about dynamic key management can be found in the publishing by Eltoweissy et

al. [15]. An efficient key management solution will not only be secure. Still, it will

also empower the scalability of the network and optimize the use of scarce resources,

particularly energy that extends the mobility of devices involved in communication.

2.4 Related Work

Traditional network architectures, such as the Kerberos protocol, detail the funda-

mental components involved in secure group communication. The central theme

of Kerberos is a trusted entity known as a key distribution center (KDC) for au-

thenticating new devices into group communication. The trusted Gateway server

also handles this responsibility in our key management protocol. One of the earliest

architecture propositions for managing cryptographic keys for multicast communi-

cations can be found in the Group Key Management Protocol by H. Harney et al.

[18]. It lists the fundamental requirements for the secure creation and distribution

of secret keys. The GKMP refers to the ISO-7498 security service standards for the

security aspects of group communication and shortlists the factors relevant to key

management as data confidentiality, data authentication, and source authentication.

Though not specifically designed for the IoT scenarios involving dynamic devices,

the GKMP architecture is designed for the internet; its fundamentals are relevant

and draw inspiration from the architectural components in our proposal. It describes

the idea of group key, KEK(key encryption key), rekeying, and deletion. The GKMP

architecture, however, expects the participants to be trusted as it assumes the in-

dividual devices’ deletion of the group key is the responsibility. In our design, we

presume the participant devices as honest− but− curious.

14

Logical Key Hierarchy (LKH) is a construct that maps all members of a group as

leaves of a tree structure, e.g., a balanced binary tree. This LKH data structure is

adopted from a few propositions [49], [50], and initially proposed by Wallner et al.

[47]. In the LKH tree, the group key is located at the root of the tree, whereas the

leaves represent the individual keys of all group members. In addition to the group

key and the individual keys, each group member also needs to store all node keys in

the path from the leaf key to the root key. If the number of group users is n, then

the height of the tree is h = log2 n, and each user holds h+1 keys. When a new user

joins or an old user leaves, all keys from the user’s leaf key to the root key should

be updated. The complexity for key distribution to n users will be O(log n), which

includes some multicast and unicast communications.

Another proposal for hierarchical management of shared keys uses One-way Function

trees (OFTs) introduced by Sherman et al. [44]. This scheme does so while achieving

forward security and backward security but could not get rid of the unicast scenar-

ios involved. In 2006, Kang et al. [22] optimized the LKH scheme with one-way

hash functions for generating new keys and using a node coordinates logic for iden-

tifying tree nodes. This method slightly reduced the complexity for nodes leaving

the scenario and reduced the storage space required for the keys. Yet, their scheme

still requires multicasting to ensure forward security when a user leaves the group

and has a logarithmic complexity for computing a replacement key. Purushothama’s

group scheme [39] proposed in 2013 is another related work. This work also of-

fers key distribution for joining and leaving use cases with logarithmic complexity.

The improvement in Purushothama’s scheme from the LKH scheme is that it uses

Hash functions for secure distribution. The scheme is optimized but still requires

multicasting to ensure forward security when a device leaves the network.

In 2013, Piao et al. [37] proposed a polynomial-based key distribution scheme, which

needs one re-key message to handle users’ joining and leaving. However, the re-key

15

message includes a polynomial constructed from all n users’ secret keys shared with

the group controller, which makes its communication cost O(n). In addition, it does

not satisfy the key independence; that is, once the group key and n − 1 individual

secret keys are compromised, the rest individual keys can be discovered.

In 2018, AlBakri et al. [2] introduced a hierarchical polynomial-based key man-

agement scheme, which follows a similar network structure and uses a trivariate

polynomial to distribute keys in bivariate polynomial form using a broadcast key.

However, their scheme is not dynamic and cannot handle the events of group users’

leaving and joining.

In 2020, Dammak et al. [10] proposed the decentralized lightweight group key man-

agement scheme based on the Chinese Remainder Theorem. However, their scheme

requires users to own a considerable number of subkeys and involves more compu-

tational efforts, including multiple decryptions per device for a single change in the

group.

Similar to the abovementioned, our proposed scheme has a binary heap tree-based

construct. However, our scheme aims to reduce the communication complexity of

the referenced protocols. In our method, when a new user joins the group, the

communication cost of re-keying for existing group users is only O(1); when an old

user leaves the group, the communication cost of re-keying is also only O(1), where

N is the maximum number of users in a group. Using the modular polynomial

coefficient broadcasting method, our scheme avoids the need for unicasting while

users leave the group.

16

Chapter 3

Models and Design Goals

This chapter formalizes the proposed system model, security model, and design goals.

3.1 System Model

Similar to many other protocols proposed in domains involving IoT handling personal

data [43], [29], our proposed scheme is designed around two type of entities, viz., a

group of IoT devices in a home network, and a Server they are connected to. The

system model in consideration consists of a small to medium group of IoT devices

ranging from half to a few dozen in number, denoted as D authenticated by a server

S. A diverse set of IoT devices are deployed in various usecases. The IoT devices in

consideration of this is are generic in nature, and does not expect to have a specific

set of properties. However, the general assumption made during this design is that

the IoT devices are low-powered sensor devices connected to hub. The local server S

is assumed to have high computing capabilities and is connected to a n uninterrupted

powersource. S acts as a trusted hub for the iternal network communication needs

of the IoT devices. S also acts as a Gateway for the communication of IoT devices

with external computers, ensuring the interactions are authenticated and secured.

One of the roles of S when interacting with D is to manage the encryption keys

17

used in communication, which is the topic of detailing in this thesis. Our design

is suitable for a set of smart devices such as a group of wearable smart healthcare

devices in an Aging In Place [16] systems setup, Intelligent intersection management

of autonomous vehicles [33], or in smart homes [11]. To illustrate the application

of our key management method, we use the exmple of Aging In Place. Aging in

place refers to the ability of an individual to continue living in their own home

or community, typically as they grow older, rather than moving to a care facility

or nursing home. It involves making modifications to the living environment to

accommodate the changing needs of the elderly person. Installing smart devices is

one such modification that acts as a technology enabler for aging in place. Figure

3.1 shows an Aging In Place scenario where our dynamic key management system

can be applied to ensure the privacy of healthcare data of individuals.

𝐺𝑎𝑡𝑒𝑤𝑎𝑦, 𝑡ℎ𝑎𝑡 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑡ℎ𝑒 𝑎𝑐𝑐𝑒𝑠𝑠
𝑡𝑜 𝑡ℎ𝑒 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 ℎ𝑜𝑚𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘.

𝑆𝑚𝑎𝑟𝑡 𝑑𝑒𝑣𝑖𝑐𝑒𝑠
𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑛𝑔
𝑢𝑠𝑒𝑟 𝑑𝑎𝑡𝑎

𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠
𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑢𝑠𝑒𝑟 𝑑𝑎𝑡𝑎
𝑣𝑖𝑎 𝐺𝑎𝑡𝑒𝑤𝑎𝑦.

Interaction of devices in
home networks with devices
from public networks
mediated through
Gateway Server.

𝐷1 𝐷2 𝐷3 𝐷4

𝑺

𝐻𝑜𝑚𝑒𝑠 𝑒𝑛𝑎𝑏𝑙𝑒𝑑 𝑤𝑖𝑡ℎ 𝐴𝑔𝑖𝑛𝑔 𝑖𝑛 𝑃𝑙𝑎𝑐𝑒 𝑠𝑦𝑠𝑡𝑒𝑚,
𝑠𝑒𝑛𝑑𝑖𝑛𝑔 data of individuals.

DEVICES IN AGING IN PLACE SYSTEMS

𝑈𝑠𝑒𝑟𝑠

Figure 3.1: An IoT device group under consideration of the key management system

3.1.1 IoT Devices

The group D consists of a set of devices detailed as {D1, D2, · · · , Dn}. These are

a set of smart IoT devices capable of sensing, processing, storing, and transmitting

18

data depending on the application environment. In the case of Aging in Place,

these devices collect and transmit healthcare data of individuals ranging from blood

pressure, activities, heart rate, and any such diagnosable healthcare-related data.

Due to the low energy design, their data processing and storage capabilities are

limited. The devices are installed and operated under the control and ownership of

a server computer known as Gateway server denoted as S.

3.1.2 Gateway Server

The gateway server S is a computer with an active power source that acts as a

portal between a private group of devices and an external network. It accounts

for the devices in the private network and is considered as a trusted entity by the

devices in D. The Gateway server is the central entity in the security architecture

of IoT device networks and is thus responsible for the authentication of IoT devices

in a secure way. From the key management perspective, S is responsible for the

initial key assignment, future key distributions, and the expiry of keys among the

IoT devices.

3.1.3 Communication Group

The criteria that determine the access of a device to a communication is governed by

the group membership. An IoT device Di gains the membership of a coherent group

G by gaining the session key for the encrypted communication. Especially in large

installations with thousands of IoT devices, grouping is useful in addressing devices

collectively rather than individually for purposes such as data collection, broadcast-

ing messages, etc. In our scenario, we use the group for broadcasting new keys to

the member IoT devices.

19

3.2 Security Model

In our security model, we consider the gateway server S to be fully trustable, which

initializes the whole system, and manages the group keys for all IoT devices in the

AiP system. While for the IoT devices D = {D1, D2, · · · , Dn}, we consider them

as honest-but-curious, i.e., they will faithfully follow the protocol, however, when

certain situations are satisfied, they will be curious about other unauthorized infor-

mation. Specifically, the following three properties should be achieved for dynamic

key management in our system.

3.2.1 Forward Secrecy:

Forward secrecy [20] protects future communication messages from an exposed old

key. Consider a scenario where a device Di that has access to a valid key K is no

longer part of a communication group G. Di may continue to access the messages

it received while it was part of the group G, but the future messages should not be

accessible to Di. This is achieved by invalidating K for future use. The new group

G-Di will be supplied with a new key Knew that is not accessible to Di.

3.2.2 Backward Secrecy:

Backward secrecy protects the communication history from a new member device

with full access. Let us say a device Dj /∈ G is joining the group G and has access to

encrypted message history. It will still not be able to decrypt the message because

it lacks the session keys used before its joining. Backward secrecy ensures that the

previous keys can neither be accessed nor be derived mathematically. It is made

possible with the secure replacement of session keys, one of the key features of our

protocol.

20

3.2.3 Key Independence:

Key independence is a property that ensures one compromised key does not give an

advantage to the adversary in compromising more keys. This is achieved through

granular control. In addition to the group key, each IoT device is assigned an in-

dividual key by the gateway server S in our system. Key independence requires

that even though the group key and some individual keys are compromised, other

uncompromised individual keys cannot be discovered.

3.3 Design Goals

Our design goal is to design a secure and efficient dynamic key management scheme

for IoT systems, which should achieve the following two properties:

3.3.1 Security

The proposed scheme should achieve forward security, backward security, and key

independence properties so as to ensure secure IoT device communications.

3.3.2 Efficiency

One of the key design goals we aim to achieve in our protocol compared to the other

related works is efficiency. The proposed scheme is efficient and scalable within a

range of a number of devices. For dynamic group key updates due to the user leaving

or joining, communication costs and storage overhead between the gateway server

and IoT devices should be as low as possible.

21

Chapter 4

Preliminaries

This chapter details the mathematical constructs that build our scheme. The various

factors in the problem statement are addressed with the help of various cryptographic

techniques. The techniques used in our proposal include hashing technique, bloom

filter, and polynomial equations using modular arithmetic.

4.1 Hashing

Invented with the goal of easy searching in large data, Hans Peter Luhn [45] created

this one-way process to generate a unique binary output known as a message digest

for a given input data. The fixed-length output of a hashing algorithm is consis-

tent for the same input. It can be used to verify the integrity of sent data at the

point of reception in a communication. Hashing algorithms are highly efficient in

computing the message digest [40], a popular method for verifying the integrity of

communicated messages and stored data. The deterministic nature of the hashing

algorithm is utilized in mapping locations in storage and memory, allowing faster

search operations. Hash functions are one of the building blocks of Bloom Filter

used in our proposition. Hash functions are one-way functions, which means the

input value cannot be determined from a hash value. This property of the hash

22

function is used to enhance the security of our method. In our approach, rather than

using actual cryptographic keys, we employ only their hashed values in composing

the polynomial. This allows for broadcasting the polynomial without the need for

additional encryption. To further enhance security, we concatenate the key input

with a timestamp, ensuring that cryptographic keys cannot be identified from the

hash, even with an exhaustive approach.

4.2 Bloom Filter

The purpose of Bloom Filter [3] is to verify the presence of an element in a set. A

Bloom filter (BF) is a space-efficient data structure designed for the highly efficient

querying of the presence of elements. A Bloom filter query only returns a true or

false. The Bloom Filter is a probabilistic data structure. This means that it can

yield positive results with a high accuracy, but not guranteed. The high efficiency of

BF comes at the cost of occasional false positive results for a given query. However,

the BF never returns a false negative. In its bare form, a BF consists of a few

independent hash functions H = {h1, h2..hk} and a considerably large bit array

A [1, 2, . . . N] of length N , with all its bits initially set to zero.

4.2.1 Bloom Filter Construction

A BF has a bit array A[] as its central theme for its storage purposes. This

array is connected to a set of hash functions H = {h1, h2, · · · , hk} where each

hi ∈ {h1, h2, · · · , hk} in is independent of the other. Each hash function can in-

take a binary integer of random length {0, 1}∗ and map it to a specific position in

the array, setting that bit as 1.

23

4.2.2 Storing Elements in BF

A BF is capable of storing the presence of multiple elements by setting the bits in

the array A[]. The storage of the BF is accessed only through its hash functions.

Consider M is a set of numbers with |m| as its cardinality. The BF attempts to

store each element mj from the set M as follows.

∀mj in M,∀hi in H,BFStore(A[hi(mj)]) = 1 (4.1)

After i iterations, an elementmj fromM will be hash-mapped into k = |H| locations

in the array A[]. This unique combination of bits in A[] represents the presence of

that specific element. The state change of A[hi(mj)] = 1 from A[hi(mj)] = 0 only

happens if A[hi(mj)] is not accessed before by BFStore(). BF anticipates collisions

[5] in their hash function, and it is possible that an attempted bit in the Array A[]

is set already.

4.2.3 Querying Elements in BF

An element mx ∈ M can be queried for its presence if M is mapped in the BF array

A[] using a Check operation. The BF check takes three inputs - the BF array, the

BF hash function set, and the element to be searched. BFCheck(A,H, x). The query

is executed as

∀hi in H,BFCheck(A[hi(mx)]) = 1 (4.2)

The check returns positive if all the bits from the hash function mappings of the

queried element are set to 1. The BFCheck(A,H, x) will return zero if at least one

of the bits from the hash map is turned to be zero. BFCheck(A,H, x) = 0 indicates

an absence of the searched element mx in M. However, BFCheck(A,H, x) = 1

does not definitively indicate the presence of mx in M. Instead, it indicates a high

24

probability of the presence of mx. This probabilistic nature is due to collisions, an

inherent behavior of hash functions.

1 0 1 0 0 1 0 1 1 0 … … 0 1

1 2 3 4 5 6 7 8 9 10 … … 𝑡

𝐴

𝑡 − 1

𝑥 ∈ 𝑍 𝑦 ∈ 𝑍

ℎ1(𝑥)
ℎ2(𝑥) ℎ3(𝑥)

ℎ1(𝑦)

ℎ2(𝑦)

ℎ3(𝑦)

𝑤 ∉ 𝑍

ℎ1(𝑤)
ℎ2(𝑤)ℎ3(𝑤)

false positive

𝑍 = 𝑚

Figure 4.1: An example of BF with H = 3, where mx,my ∈ M, mw /∈ M, but
BFCheck(A,H, w) = 1.

4.2.4 Controlling the False Positiveness of a BF

The image Fig. 4.1 depicts the probable nature of the BF. The BF query will never

result in false negatives but can yield false positives. In our method, this means that

there is a chance an IoT device may assume a wrong group key and become isolated

from subsequent communications. It’s important to address false positives in a BF,

which can be mitigated by adjusting the parameters used in its construction. If the

element set M with cardinality m is mapped to a BF array A[] of t − bits long

where mappings are uniform and equal probability is assumed while querying, the

probability of a query yielding a false positive (fp) can be calculated with following

equation,

fp = (1− (1− 1/t)m)k ≈ (1− e−km/t)k.

where k is the number of hash functions,t is the length of BF array, and m is the

number of elements that can be stored in the BF. When k = ln 2· t
m
, the false positive

can be reduced as (1− e−km/t)k = (1
2
)k.

25

4.3 Polynomial Functions

Our design uses a polynomial function for the secure communication of the encryp-

tion keys newly generated by the Gateway Server. The new group key embedded in

the sent polynomial coefficients can be resolved only by the intended recipients, who

can reconstruct the factored form of the polynomial.

4.3.1 Polynomial-based Access Control Technique

Let p be a large prime with bit length |p| = κ, e.g., κ = 128, and Z = {z1, z2, · · · , zm}

be an integer set of size |Z| = m, where each element zi ∈ Z belongs to Z∗
p. The

Polynomial based Access Control (PAC) technique enables anyone who holds at least

one element in Z to access a new secret key s ∈ Z∗
p; while for someone who does

not hold any element in Z cannot access the new secret key s. Concretely, the PAC

technique is described as follows.

Polynomial Generation. Given the set Z = {z1, z2, · · · , zm} and a new secret key

s, a polynomial is generated as follows:

f(x) =
∏
zi∈Z

(x− zi) + s mod p =
m∑
j=0

cj · xj mod p (4.3)

where all coefficient cj, for j = 0, 1, · · · ,m, belong to Z∗
p.

Secret Key Access. Given the coefficients (cm, cm−1, · · · , c1, c0) of the polynomial

f(x), if someone really has an element zα ∈ Z, he can recover the secret key s by

computing

f(zα) =
m∑
j=0

cj · zαj mod p = s (4.4)

From the equation 4.3, it’s obvious that if someone does not hold any element in Z,

he can obtain the secret key s only with a negligible probability. In this thesis, we

will demonstrate how to use the PAC to securely distribute new group keys.

26

Chapter 5

The Proposed Scheme

In this chapter, we depict the details of our scheme that builds a secure and efficient

dynamic key management scheme. The theme of our scheme is a balanced binary

tree of secure AES keys with devices linked to the leaves of the tree, indicating

ownership of keys belonging to that branch of the tree. This theme is built based on

the Logical Key Hierarchy design proposed by Wallner et al. [47] and formalized by

Harney et al. [17]. Our scheme builds the binary tree organization of keys during

the system’s initialization phase.

5.1 System Initialization

The fully trusted entity Gateway Server S initiates the system by generating secure

keys depending on the maximum number of devices it needs to manage keys. For a

set of devices D = {D1, D2, · · · , Dn} with maximum cardinality |D| = N , the Server

S generates a set of 2N − 1 AES keys, denoted as {K = (k[1], k[2], · · · , k[2N − 1])}.

Each secure key ki is a random binary number in Z∗
p, where p is a large prime number

the server generates and stores privately. The prime number p is of a fixed length as

decided by the server S. In our proposal, we consider the length of p as 128 − bits

when represented in binary format. During the initialization phase, S unicasts a set

27

of keys to each device Di through a secure channel. The number of keys distributed

to each device Di is log(N), equivalent to the height of the LKH tree.

𝑘[1]

𝑘[2] 𝑘[3]

𝑘[4] 𝑘[5] 𝑘[6] 𝑘[7]

𝑘[8] 𝑘[9] 𝑘[10] 𝑘[11] 𝑘[12] 𝑘[13] 𝑘[14] 𝑘[15]

𝑁 = 8 𝑘[1]

𝑘[2] 𝑘[3]

𝑘[4] 𝑘[5] 𝑘[6] 𝑘[7]

𝑘[8] 𝑘[9] 𝑘[10] 𝑘[11] 𝑘[12] 𝑘[13] 𝑘[14] 𝑘[15]

𝑛 = 6

𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6Organize 2𝑁 − 1 keys into a binary heap tree

Figure 5.1: A sample key tree with N = 8 and n = 6. The device D2 will be assigned
the key set (k[9], k[4], k[2], k[1]).

The S considers the devices associated with the LKH tree logically at its leaves and

has access to the specific secure key at the corresponding leaf position and the branch

of the tree leading to the leaf from the root. For a given device Di, the corresponding

leaf key is k[N−1+i]. The set of keys in Di’s possession as decided by the server will

be (k[N−1+ i], k[⌊(N−1+ i)/2⌋], k[⌊(N−1+ i)/4⌋], · · · , k[1] = k[⌊(N−1+ i)/2w⌋)]

when keys are indexed from 1 starting from the root of the tree. For example, in

Fig. 5.1, where N = 8, Di = D2 will be assigned a set of keys (k[N − 1 + i] =

k[9], k[⌊(N − 1 + i)/2⌋] = k[4], k[⌊(N − 1 + i)/4⌋] = k[2], k[⌊(N − 1 + i)/8⌋] = k[1]).

The key k[1] is the key at the root of the LKH and is shared among all the devices in

the group, hence known as the Group Key. Any broadcast information can be sent

by S by encrypting it with k[1]. The key k[N − 1 + i] is shared only to a specific

device Di. This key is used for communicating secretly using unicast messages be-

tween the gateway server S and the device Di. The intermediary keys between the

group key and leaf keys are not used for any sub-group communication purposes.

They are only used for deriving new keys during group key updates.

28

The security goals of forward security and backward security are achieved by up-

dating the group key each time an IoT device leaves the group or joins the group.

The efficiency of our proposal lies in how the new group key is communicated to the

IoT members of the communication group during different scenarios.

5.2 Group Key Update When a New Device Joins

the Group

During the initialization phase, the server S allocates leaf keys for N devices, the

maximum number of devices it can support. At first, the server initialized a com-

munication group with several devices |D| = n, where n < N . In time, a new device

Dn+1 requests S to join the device group D. This initiates a key replacement request,

and the server S handles it the following way.

Assume there are n IoT devices in the group, where n < N , and no IoT device

previously left the group. When a new IoT device, denoted as Dn+1, joins the group,

the existing group key needs to be replaced. The following steps will be executed

between the gateway server S and all IoT devices D for the key update.

Step 1: First step is the new key generation. S generates a new AES key with

128 − bit in length k[1]new ∈ Z∗
p. and replaces the copy of group key k[1] in its

possession. A copy of the old key k[1] will be kept securely.

Step 2: S The generated new key k[1]new needs to be communicated to the devices

in the communication group D. This is achieved through the secure broadcasting

of the key. The new key is broadcasted by encrypting it with the old key k[1]. i.e.

Broadcast the ciphertext C as C = AESEncrypt(k[1], k[1]new).

Step 3: Every IoT device Di ∈ D receives C and uses the k[1] in their posession

to decrypt C and retrieve the k[1]new. i.e. k[1]new = AESDecrypt(C, k[1]). All devices

replace their copies of the old group key k[1] with the new key k[1]new.

29

Step 4: S addresses the key requirements of the newly joined device Dn+1 using

secure channel unicast messaging. First, the new group key k[1]new is shared with

the new device. Then S assigns the leaf key k[N − 1 + (n + 1)] = k[N + n] to

the new device along with the keys from the keys of the branch of the key tree

leading from root till the leaf k[N + n]. The keys assigned to Dn+1 will be (k[N +

n], k[⌊(N + n)/2⌋], k[⌊(N + n)/4⌋], · · · , k[1] = k[⌊(N − 1 + i)/2w⌋)]). This use case

assumes the leaves in the key tree before the N +n position are occupied during the

initialization. For example, in Fig. 5.2, D7 will be assigned a set of keys (k[N +n] =

k[14], k[⌊(N+n)/2⌋] = k[7], k[⌊(N+n)/4⌋] = k[3], k[⌊(N+n)/8⌋] = k[1]). Note that

k[1] has already been the updated group key at this step.

𝑘[1]

𝑘[2] 𝑘[3]

𝑘[4] 𝑘[5] 𝑘[6] 𝑘[7]

𝑘[8] 𝑘[9] 𝑘[10] 𝑘[11] 𝑘[12] 𝑘[13] 𝑘[14] 𝑘[15]

𝑁 = 8
𝑘[1]

𝑘[2] 𝑘[3]

𝑘[4] 𝑘[5] 𝑘[6] 𝑘[7]

𝑘[8] 𝑘[9] 𝑘[10] 𝑘[11] 𝑘[12] 𝑘[13] 𝑘[14] 𝑘[15]

𝑛 = 6

𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6

Organize 2𝑁 − 1 keys into a binary heap tree

𝐷7 𝑗𝑜𝑖𝑛𝑖𝑛𝑔

𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6 𝐷7

Updating 𝑘[1]𝑁 = 8

𝑛 = 7

Figure 5.2: Example: The new member D7 receives keys (k[14], k[7], k[3], k[1]).

Also note that, for some cases, before a new IoT device joins the group, if some IoT

devices have already left the group, the gateway server S should assign the most left

unoccupied leaf key, i.e., k[N − 1 + i], to the newly joining IoT device, and denotes

the newly joining IoT device as the device Di. After that, following the same steps

above, the group key update can be performed by S and D. See Fig. 5.3 for an

example, where a new device will be assigned with the most left unoccupied ID D5.

Then, k[1] will be updated, and D5 will be assigned with keys (k[12], k[6], k[3], k[1]).

30

𝑘[1]

𝑘[2] 𝑘[3]

𝑘[4] 𝑘[5] 𝑘[6] 𝑘[7]

𝑘[8] 𝑘[9] 𝑘[10] 𝑘[11] 𝑘[12] 𝑘[13] 𝑘[14] 𝑘[15]

𝑁 = 8
𝑘[1]

𝑘[2] 𝑘[3]

𝑘[4] 𝑘[5] 𝑘[6] 𝑘[7]

𝑘[8] 𝑘[9] 𝑘[10] 𝑘[11] 𝑘[12] 𝑘[13] 𝑘[14] 𝑘[15]

𝑛 = 6

𝐷1 𝐷2 𝐷3 𝐷4 𝐷6

Organize 2𝑁 − 1 keys into a binary heap tree

a new device joining

𝐷1 𝐷2 𝐷3 𝐷4 𝐷6𝐷7

𝑁 = 8

𝑛 = 7

𝐷7unoccupied 𝐷5

assign ID 𝐷5
for the new

device

Updating 𝑘[1]

Figure 5.3: The new member D5 receives keys (k[12], k[6], k[3], k[1]).

5.3 Group Key Update When a Device Leaves the

Group

In a group of n devices, when a device Di leaves the group, the above-mentioned

broadcasting method is not a possibility. The leaving device also possesses the old

group key k[1] used for encrypting the new broadcasted group key k[1]new. The

following steps will detail how our protocol handles the situation, excluding Di from

future group communications.

Step 1: Expire keys owned by Di. When S identifies that the deviceDi no longer

is a member of the group, S starts marking the keys present in the key tree and owned

by Di for expiry. This includes the leaf key k[N−1+i] and the branch of keys leading

to the key tree root. They are k[⌊(N−1+i)/2⌋], k[⌊(N−1+i)/4⌋], · · · , k[1]). Figure

Fig. 5.4 shows an example of device D5 leaving the group.

Step 2: Replace expired keys with new keys. S needs to replace the set

of keys that is expired due to D5 leaving. S generates a new AES 128 − bit key

k[1]new to replace the group key k[1] in the key tree. The remaining expired keys are

now targeted for replacement. However, they are not replaced by generating new

AES keys. Instead, the expired keys are XORed with the new group key k[1]new

31

𝑘[1]

𝑘[2] 𝑘[3]

𝑘[4] 𝑘[5] 𝑘[6] 𝑘[7]

𝑘[8] 𝑘[9] 𝑘[10] 𝑘[11] 𝑘[12] 𝑘[13] 𝑘[14] 𝑘[15]

𝑁 = 8
𝑘[1]

𝑘[2] 𝑘[3]

𝑘[4] 𝑘[5] 𝑘[6] 𝑘[7]

𝑘[8] 𝑘[9] 𝑘[10] 𝑘[11] 𝑘[12] 𝑘[13] 𝑘[14] 𝑘[15]

𝑛 = 7

𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6

Organize 2𝑁 − 1 keys into a binary heap tree

𝐷5 leaving

𝐷1 𝐷2 𝐷3 𝐷4 𝐷6𝐷7

Revoke and

Update
𝑁 = 8

𝑛 = 6

𝐷7unoccupied

Figure 5.4: Example: The new member D7 receives keys (k[14], k[7], k[3], k[1]).

to generate the new keys in those positions. The updated key set will look like

k[⌊(N − 1 + i)/2⌋]⊕ k[1]new, k[⌊(N − 1 + i)/4⌋]⊕ k[1]new, · · · , k[1]new).

Step 3: Identify subgroup roots for communication. This step details the

communication of the new group key to the updated group D|{Di}. Broadcast is

insecure in this scenario as it cannot exclude Di. The alternate option is unicasting

the new group key to all other members in D. However, this is highly inefficient

and has O(n) complexity. Hence, in our design, S takes an alternative approach by

communicating the new group key to D|{Di} by embedding it in a polynomial with

the intermediate keys from the key tree. First, S starts identifying the root of the

subgroups of the new group D|{Di}. This set is created by finding the sibling keys

of the keys except the Group key previously owned by Di. A sibling key is a key

in a tree with the same parent and can be identified by dividing the key’s position

with a divisor as 2. The sibling key of ki is either ki+1 or ki−1. If divisions yield

the same result (same parent key) for both keys, we can conclude that the keys are

siblings. This logic is applied to the expired keys of Di to identify the sibling set

KDi
= (k[N − 1 + i], k[⌊(N − 1 + i)/2⌋], k[⌊(N − 1 + i)/4⌋], · · · , k[1]).

Step 4: Securing the sibling keys with cryptographic hash and timestamp.

The keys used in the polynomial are first processed with the following logic. S

32

intakes the sibling set KDi
and generates a hash set Z = zw, zw − 1, · · · , z1, where

each element zi ∈ Z is generated by hashing each element kDi
∈ KDi

using the

timestamp ts.

zi = H(kDi
||ts) (5.1)

Step 5: Generate the polynomial coefficients. The hash set is used by S to

generate a polynomial of degree |Z| where each zi will serve as a solution to the

polynomial that will yield the new group key k[1]. It means that the generated

polynomial can be resolved only by members of D who possess one of the zi ∈ Z.

The polynomial created will be

f(x) =
w∏
i=1

(x− zi) + k[1] mod p (5.2)

The above polynomial can further be resolved into its coefficients as

f(x) =
w∑

j=0

cj · xj mod p (5.3)

The coefficients are intended for broadcasting to the devices in the group D.

Step 6: Create the bloom filter. The S needs to build a verification mechanism

for validating the success of polynomial resolution attempts. This is done by creat-

ing a Bloom Filter and storing the coefficients’ presence. It executes the following

algorithm.

BFStore(k[1]||ts) (5.4)

S then broadcasts the BF along with the coefficients set and ts to all devices in the

group D.

Step 6: Resolving the broadcasted polynomial. Every Di ∈ D will receive

33

the broadcast and will attempt to resolve the polynomial with all the keys they

possess except the root key. Each device will make w = log(n) − 1 attempts to

resolve the polynomial. After verifying with BF, the successful attempts will result

in updating the specific key and every key below in the hierarchical order using the

XOR operation.

When the broadcast is received by the DeviceDi, it picks up the keys in its possession

except k[1] as (k[N − 1 + i], k[⌊(N − 1 + i)/2⌋], k[⌊(N − 1 + i)/4⌋], · · · , k[⌊(N − 1 +

i)/2w⌋]). It then generates a set Z ′ by hashing each key against the ts received from

the broadcast.

Z ′ = (H(k[N − 1 + i]||ts),

H(k[⌊(N − 1 + i)/2⌋]||ts),

H(k[⌊(N − 1 + i)/4⌋]||ts),

· · · , H(k[⌊(N − 1 + i)/2w⌋]||ts))

(5.5)

The device Di proceeds to find the new key by attempting to resolve the polynomial

using elements in the Z ′.

Di will generate a maximum of w probable keys. Whenever a probable key kprobable[1]

is created after resolving a polynomial, Di will verify them with the Bloom Filter as

follows.

BFCheck(kprobable[1]||ts) (5.6)

If the bloom filter confirms the key is valid, Di will replace its k[1] with kprobable[1].

Then, it will hierarchically perform XOR operations to derive the new key. That is,

knew[⌊(N − 1 + u)/2w⌋] = k[⌊(N − 1 + u)/2w⌋]⊕ k[⌊(N − 1 + u)/2w−1⌋].

If the Bloom filter returns 0 for every member in Z ′, the key change does not target

the device Di. Hence, it will continue to use its existing keys.

34

Chapter 6

Security Analysis

This chapter analyzes the proposed scheme against the defined security goals and

will explain how the scheme achieves backward security, forward security, and key

independence.

6.1 Backward Security

The goal of backward security is protecting communication history from newly join-

ing devices in a group. Let Dx be a device that joins the group D with a group key

ktn where t indicates the time when Dx joined. The new device may gain access

to the message history storage location where messages are encrypted with mul-

tiple AES keys ktn−1, ktn−2, · · · where tn − 1, tn − 2, · · · indicates the timepoints

before tn; i.e., before the joining of Dx. However, it cannot decrypt the encrypted

message history as it does not possess the encryption key used for encrypting the

messages. It is impossible to derive ktn−1, ktn−2, · · · from ktn due to the randomness

property of AES key generation. It is possible for Dx to eavesdrop the broadcast

ciphertext and C = AES(ktn−1, ktn). Dx also gains ktn legitimately. However, one

plaintext, ciphertext pair is insufficient to launch a cryptanalysis using a known

plaintext attack model [41] against the secure AES. Thus, we can conclude that this

35

scheme ensures backward compatibility.

6.2 Forward Security

Forward security assures the confidentiality in a group from a device Dx, which

is no longer part of the group for the communications that occurred after Dx has

left the group. This is made possible by expiring the list of keys Dx had access

to((k[N − 1 + x], k[⌊(N − 1 + x)/2⌋], k[⌊(N − 1 + x)/4⌋], · · · , k[1])) when it was

the member of the group D. The new key is communicated using a polynomial

f(x) =
∏w

j=1(x − zi) + k[1] mod p, built from the sibling keys of the Dx key list

except for the root key. However, Dx can only guess its sibling keys with a negligible

probability greater than lgN
2128

, which is equivalent to a random choice. Hence, we can

conclude this scheme assures forward security.

6.3 Key Independence

Our scheme achieves the key independence property by ensuring a secured key can-

not be compromised even when multiple related keys are known. The key inde-

pendence can be examined at the different stages of key handling. During the key

generation, the AES key generator generates keys randomly. For a given set of

generated group keys K = {k1, k2, · · · , kt1 , kt}, the revelation of any random set

of keys ranging from 1. . . kn − 1 also cannot compromise the security of kt because

of the randomness in key generation. During the new group key distribution, our

scheme uses hashing, concatenation, and modular arithmetic operations on individ-

ual keys when the polynomial is formed. Our scheme constructs the polynomial

as f(x) =
∏w

i=1(x − zi) + k[1] mod p, where each zi = H(ki||ts). The keys are

not directly used. This ensures that the individual keys used in constructing the

polynomial stay irrecoverable for an unintended recipient. This is an advantage in

36

our scheme compared to Piao et al.’s scheme [37], where the polynomial is con-

structed with individual keys. In the Piao’s scheme, the polynomial is constructed

P =
∏n

i=1(x− ki) +Kt, where kt is the group key and ki = k1, k2, · · · , kn represents

the individual device keys. It is easy to recover kn from this polynomial when the

keys {k1, k2, · · · , kn−1} are known.

With the highlighted security analysis, it is evident that the security model in our

proposed scheme protects encryption keys from revealing each other, thereby achiev-

ing key independence. It also achieves forward and backward security by ensuring

the time-bound access of private information based on group membership duration.

37

Chapter 7

Performance Evaluation

7.1 Performance Comparison

In this section, we compare the performance of our proposed scheme in terms of

re-keying costs and storage overhead. Specifically, we compare our proposed scheme

with LKH [49], [17], and Piao et al.’s scheme [37], as our proposed scheme is closely

related to them. We consider 2w−1 < n < N = 2w, i.e., ⌈log2 n⌉ = log2N = w, the

large prime p and the timestamp ts are 128 bits, and the bloom filter size is also 128

bits in our proposed scheme, which can achieve a much lower false positive rate. For

the fairness of comparison, we consider all key sizes in three schemes to be 128 bits.

Table 7.2 shows the comparison of the number of re-keying messages and the size of

each message after joining/leaving for the three schemes. In terms of the number of

re-keying messages, both Piao et al.’s [37] scheme and our scheme are more efficient

than LKH [49], [17], as the number of messages after joining (multicast and unicast)

and leaving is all 1. In addition, in terms of the size of the message, our scheme

is better than Piao et al.’s scheme. For storage overhead, we compare the three

schemes in Table 7.1. From the table, we can see that our scheme has a little higher

storage cost at the gateway server. Since the gateway server is powerful in both

38

storage and computation, the storage cost is not a big issue. On the IoT device side,

our scheme has the same overhead as LKH. Although Piao et al.’s scheme has less

overhead, the communication costs for re-keying, as we analyzed above, are much

higher than LKH and our scheme.

Table 7.1: Comparison of the storage overhead of the three schemes

Schemes Gateway server Each IoT device

LKH 128 ∗ (2n− 1) 128 ∗ (log2 n+ 1)

Piao et al.’s scheme 128 ∗ (n+ 1) 128 ∗ 2

Our proposed scheme 128 ∗ (2N − 1) 128 ∗ (log2 N + 1)

Table 7.2: Comparison of the number of re-keying messages and the size of each
message after join/leave

Schemes
The number of re-keying messages and the size (in bit) of each message

Join Leave

Multicast Unicast

number
size of each
message

number
size of each
message

number
size of each
message

LKH
[49, 17]

log2 n− 1 128 log2 n+ 1 128 2 log2 n 128

Piao et al.’s
scheme [37]

1 128 ∗ (n+ 2) 1 128 1 128 ∗ n

Our proposed
scheme

1 128 1 128 ∗ (log2 N + 1) 1 128 ∗ (log2 N + 3)

7.2 Execution Results

Here, we present the readings and results from the tests conducted on the program

built based on the proposed scheme. The tests run in a laptop computer powered by

a 64bit Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz 2.11 GHz processor running

the Windows 11 Pro operating system. The PC has 8GB RAM. The program is

developed in Java using Visual Studio Code editor and is designed to run on PCs

with lower performance and configurations.

The program is compiled in Visual Studio Code using Java plugins. The source

39

code uses only basic data structures and can be rewritten to other object-oriented

languages running in different environments without major structural changes. The

source code is provided in Appendix A of this document. The program’s Main()

method invokes two methods.

• AddDevice() This method adds a new device to the communication group and

simultaneously broadcasts the new group key encrypted with the previous group key.

In our test application, up to 8 devices can be added. Each device has a specific

slot(position) allocated when the device is added to the group, starting from the

lowest available position.

• RemoveDevice() This method broadcasts the new group key using polynomial

coefficients and modular arithmetic while removing the requested device from the

group. The memory consumption for RemoveDevice() method was assessed by re-

moving the devices from the last to the first.

The program is run on automated mode for 100 cycles with a 1ms sleep timer between

the method calls. The observations of the executions were summarized by calculating

the average and are presented below.

7.2.1 CPU Usage

The CPU usage for the AddDevice() and RemoveDevice() operations were measured

in microseconds. The results for CPU consumption were very consistent. The Ad-

dDevice() operation consumed between 200 − 400µs, depending upon the devices

already present in the group. Except for the first device, the incremental time taken

for adding a new device in the group was in the range of 40− 50µs.

The graph in figure 7.1 shows increasing time due to the simulated IoT objects in

a single PC. In the use case scenario with real IoT devices, the computation of the

new key by decryption will be distributed among different processors. Hence, the

graph will be flatter and less inclined.

40

Number of devices added

Ti
m

e
in

 m
ic

ro
se

co
n

d
s

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8

Time Consumed While Adding devices sequentially

Figure 7.1: Time consumption while devices join the group.

Number of devices removed

Ti
m

e
in

 m
ic

ro
se

co
n

d
s

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8

Removing devices sequentially

Figure 7.2: Time consumption while devices leave the group.

41

The highest CPU usage during the removal of the device was 1700µs, and the low-

est was 400µs. As observed in figure 7.2, the time consumed by RemoveDevice()

is directly proportional to the remaining devices—the lesser the number of devices,

the lesser the polynomial resolutions per device. RemoveDevice() consumes more

time than the add operation due to the same reasons stated in the memory assess-

ment. This calculation will also be distributed among the individual devices in a

real scenario, averaging the calculation cost per device as 400µs.

42

Chapter 8

Conclusions and Future Works

8.1 Conclusion

In this thesis, we have proposed an efficient dynamic key management scheme for

IoT systems. Our proposed scheme is characterized by employing a binary heap

tree, bloom filter, and polynomial-based technique to achieve secure and efficient

dynamic key management. Security analysis shows that our scheme can achieve

desirable security requirements, i.e., forward security, backward security, and key

independence. Since our scheme relies on AES encryption alone and does not use

public key cryptography, it is secure from many associated vulnerabilities [?]. In

addition, a detailed performance evaluation also indicates our scheme is more effi-

cient than the referenced works. Our implementation demonstrated the scheme’s

efficiency. One of the limitations of our scheme is the increasing complexity of the

number of devices that can be used. We hope to address this limitation in our future

works.

43

8.2 Future Work

Our scheme proposes the key replacement when group members change. There are

other reasons to replace the group key, such as a long session—our scheme in the

future aims to address scenarios other than group membership change that require

key replacements. The performance evaluation indicated the need for optimizing the

proportionally large memory consumption on key replacement during the removal

of devices. Though the measures are IoT-friendly, the model’s scalability will not

be as efficient as it is. This is something we would like to address in our future

work. The degree of the polynomial is the primary reason that limits the scalability.

One way to handle the scalability is by horizontally scaling the model using multi-

ple key trees. In our future work, we also seek alternatives for trust-based dynamic

key management. One of the few desirable traits for a key management algorithm

would be a distributed approach instead of the proposed centralized method for key

management. Our key management is pivoted around the trusted gateway server.

A trust-less mechanism may better cater to real-time needs. Another alternative

we would like to use is an alternative encryption mechanism. The proposed method

ensures the use of 128-bit AES encryption. While AES is efficient, other encryption

schemes may also fit into the security and privacy requirements and are worth ex-

ploring. How the current implementation performs against larger AES keys is also

worth looking into. The plan to approach future work is best done after receiving

the measurement of this scheme implemented on a real scenario, including actual

IoT hardware devices.

44

Bibliography

[1] Java Program to Implement Bloom Filter - Sanfoundry — sanfoundry.com, [Ac-

cessed 09-08-2023].

[2] Ashwag Albakri, Mahesh Maddumala, and Lein Harn, Hierarchical polynomial-

based key management scheme in fog computing, (2018), 1593–1597.

[3] Burton H. Bloom, Space/time trade-offs in hash coding with allowable errors,

13 (1970), no. 7.

[4] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel

Poschmann, Matthew JB Robshaw, Yannick Seurin, and Charlotte Vikkelsoe,

Present: An ultra-lightweight block cipher, (2007), 450–466.

[5] Andrei Broder and Michael Mitzenmacher, Network Applications of Bloom Fil-

ters: A Survey, Internet Mathematics 1 (2003), no. 4, 485 – 509.

[6] Ramaswamy Chandramouli, Michaela Iorga, and Santosh Chokhani, Crypto-

graphic key management issues and challenges in cloud services, (2014).

[7] Tzu-Chiang Chiang and Yueh-Min Huang, Group keys and the multicast security

in ad hoc networks, (2003), 385–390.

[8] Don Coppersmith, The data encryption standard (des) and its strength against

attacks, IBM journal of research and development 38 (1994), no. 3, 243–250.

45

[9] Joan Daemen and Vincent Rijmen, Aes proposal: Rijndael, (1999).

[10] Maissa Dammak, Sidi-Mohammed Senouci, Mohamed Ayoub Messous, Mo-

hamed Houcine Elhdhili, and Christophe Gransart, Decentralized lightweight

group key management for dynamic access control in iot environments, IEEE

Transactions on Network and Service Management 17 (2020), no. 3, 1742–1757.

[11] Subir Das, Yoshihiro Ohba, Mitsuru Kanda, David Famolari, and Sajal K Das,

A key management framework for ami networks in smart grid, IEEE Commu-

nications Magazine 50 (2012), no. 8, 30–37.

[12] Dorothy E Denning and Peter J Denning, Data security, ACM computing sur-

veys (CSUR) 11 (1979), no. 3, 227–249.

[13] Jyoti Deogirikar and Amarsinh Vidhate, Security attacks in iot: A survey,

(2017), 32–37.

[14] Mohamed Elhoseny, Navod Neranjan Thilakarathne, Mohammed I Alghamdi,

Rakesh Kumar Mahendran, Akber Abid Gardezi, Hesiri Weerasinghe, and

Anuradhi Welhenge, Security and privacy issues in medical internet of things:

overview, countermeasures, challenges and future directions, Sustainability 13

(2021), no. 21, 11645.

[15] M. Eltoweissy, M. Moharrum, and R. Mukkamala, Dynamic key management

in sensor networks, IEEE Communications Magazine 44 (2006), no. 4, 122–130.

[16] Sheik Mohammad Mostakim Fattah, Nak-Myoung Sung, Il-Yeup Ahn, Minwoo

Ryu, and Jaeseok Yun, Building iot services for aging in place using standard-

based iot platforms and heterogeneous iot products, Sensors 17 (2017), no. 10,

2311.

[17] H. HARNEY, Logical key hierarchy protocol, IETF Internet Draft (1999).

46

[18] Hugh Harney and Carl Muckenhirn, Rfc2094: Group key management protocol

(gkmp) architecture, (1997).

[19] Wan Haslina Hassan et al., Current research on internet of things (iot) security:

A survey, Computer networks 148 (2019), 283–294.

[20] Xiaobing He, Michael Niedermeier, and Hermann De Meer, Dynamic key man-

agement in wireless sensor networks: A survey, Journal of network and com-

puter applications 36 (2013), no. 2, 611–622.

[21] Chung-Wen Hung and Wen-Ting Hsu, Power consumption and calculation re-

quirement analysis of aes for wsn iot, Sensors 18 (2018), no. 6, 1675.

[22] Qiaoyan Kang, Xiangru Meng, and Jianfeng Wang, An optimized lkh scheme

based on one-way hash function for secure group communications, (2006), 1–4.

[23] Masanobu Katagi, Shiho Moriai, et al., Lightweight cryptography for the internet

of things, sony corporation 2008 (2008), 7–10.

[24] Sunny King and Scott Nadal, Ppcoin: Peer-to-peer crypto-currency with proof-

of-stake, self-published paper, August 19 (2012), no. 1.

[25] Fabian Kuhn and Rotem Oshman, Dynamic networks: models and algorithms,

ACM SIGACT News 42 (2011), no. 1, 82–96.

[26] Löıc Lannelongue, Jason Grealey, and Michael Inouye, Green algorithms: quan-

tifying the carbon footprint of computation, Advanced science 8 (2021), no. 12,

2100707.

[27] Bin Liu, Xiao Liang Yu, Shiping Chen, Xiwei Xu, and Liming Zhu, Blockchain

based data integrity service framework for iot data, (2017), 468–475.

[28] Kelvin Ly and Yier Jin, Security challenges in cps and iot: From end-node to

the system, (2016), 63–68.

47

[29] Mehedi Masud, Gurjot Singh Gaba, Karanjeet Choudhary, M. Shamim Hossain,

Mohammed F. Alhamid, and Ghulam Muhammad, Lightweight and anonymity-

preserving user authentication scheme for iot-based healthcare, IEEE Internet of

Things Journal 9 (2022), no. 4, 2649–2656.

[30] Sadiya Mirza and Sana Zeba Bakshi, Introduction to manet, International re-

search journal of engineering and technology 5 (2018), no. 1, 17–20.

[31] Sasa Mrdovic and Branislava Perunicic, Kerckhoffs’ principle for intrusion de-

tection, Supplement (2008), 1–8.

[32] Pedro Sanchez Munoz, Nam Tran, Brandon Craig, Behnam Dezfouli, and

Yuhong Liu, Analyzing the resource utilization of aes encryption on iot devices,

(2018), 1200–1207.

[33] Elnaz Namazi, Jingyue Li, and Chaoru Lu, Intelligent intersection management

systems considering autonomous vehicles: A systematic literature review, IEEE

Access 7 (2019), 91946–91965.

[34] Sean W O’Malley and Larry L Peterson, A dynamic network architecture, ACM

Transactions on Computer Systems (TOCS) 10 (1992), no. 2, 110–143.

[35] Suryakanta Panda, Samrat Mondal, Rinku Dewri, and Ashok Kumar Das, To-

wards achieving efficient access control of medical data with both forward and

backward secrecy, Comput. Commun. 189 (2022), no. C, 36–52.

[36] Yusuf Perwej, Kashiful Haq, Firoj Parwej, M Mumdouh, and Mohamed Hassan,

The internet of things (iot) and its application domains, International Journal

of Computer Applications 975 (2019), no. 8887, 182.

[37] Yanji Piao, Jonguk Kim, Usman Tariq, and Manpyo Hong, Polynomial-based key

management for secure intra-group and inter-group communication, Comput.

Math. Appl. 65 (2013), no. 9, 1300–1309.

48

[38] Warren B Powell, Patrick Jaillet, and Amedeo Odoni, Stochastic and dynamic

networks and routing, Handbooks in operations research and management sci-

ence 8 (1995), 141–295.

[39] B. R. Purushothama and B. B. Amberker, Secure group and multi-layer group

communication schemes based on polynomial interpolation, Secur. Commun.

Networks 6 (2013), 735–756.

[40] Ronald Rivest, The md5 message-digest algorithm, (1992).

[41] D Rossi, M Omana, C Metra, and ML Valarmathi, Cryptanalysis of simplified-

aes encrypted communication, International Journal of Computer Science and

Information Security (IJCSIS) 13 (2015), no. 10.

[42] Kazhan Othman Mohammed Salih, Tarik A Rashid, Dalibor Radovanovic, and

Nebojsa Bacanin, A comprehensive survey on the internet of things with the

industrial marketplace, Sensors 22 (2022), no. 3, 730.

[43] Manasha Saqib, Bhat Jasra, and Ayaz Hassan Moon, A lightweight three factor

authentication framework for iot based critical applications, Journal of King

Saud University - Computer and Information Sciences 34 (2022), no. 9, 6925–

6937.

[44] A.T. Sherman and D.A. McGrew, Key establishment in large dynamic groups

using one-way function trees, IEEE Transactions on Software Engineering 29

(2003), no. 5, 444–458.

[45] Hallam Stevens, Hans peter luhn and the birth of the hashing algorithm, IEEE

spectrum 55 (2018), no. 2, 44–49.

[46] Ramao Tiago Tiburski, Leonardo Albernaz Amaral, Everton de Matos, Dario

F. G. de Azevedo, and Fabiano Hessel, Evaluating the use of tls and dtls protocols

in iot middleware systems applied to e-health, (2017), 480–485.

49

[47] Debby Wallner, Eric Harder, and Ryan Agee, Key management for multicast:

Issues and architectures, (1999).

[48] Moritz Wendl, My Hanh Doan, and Remmer Sassen, The environmental im-

pact of cryptocurrencies using proof of work and proof of stake consensus al-

gorithms: A systematic review, Journal of Environmental Management 326

(2023), 116530.

[49] Chung Kei Wong, Mohamed G. Gouda, and Simon S. Lam, Secure group com-

munications using key graphs, (1998), 68–79.

[50] , Secure group communications using key graphs, IEEE/ACM Trans.

Netw. 8 (2000), no. 1, 16–30.

[51] Sen Xu, Manton Matthews, and Chin-Tser Huang, Security issues in privacy

and key management protocols of ieee 802.16, Proceedings of the 44th Annual

Southeast Regional Conference (New York, NY, USA), ACM-SE 44, Association

for Computing Machinery, 2006, p. 113–118.

50

Appendix A

Code

This part of the thesis presents the implementation source code of the proposed

scheme. This program is compiled in VS Code using Java plugins. The code is

modularized into the following files.

A.1 AES.Java

Contains the module responsible for creating, encrypting, decrypting and XOR of

AES Keys. It ensures that no keys are beyond 16 bytes of length during any of the

operations and truncates the last byte if any key becomes more than 16 bytes. This

code uses Java APIs related to AES.

import java.math.BigInteger;

import java.security.NoSuchAlgorithmException;

import java.security.SecureRandom;

import java.util.Arrays;

import java.util.Base64;

import java.util.Random;

import javax.crypto.Cipher;

import javax.crypto.KeyGenerator;

import javax.crypto.SecretKey;

import javax.crypto.spec.IvParameterSpec;

import javax.crypto.spec.SecretKeySpec;

public class AES

{

51

String strArray;

IvParameterSpec ivp;

Random random;

int keyLength;

final static int AESbytelength =16;

final static int offset =0;

boolean foundkey;

byte [] keyinBytes;

public AES(BigInteger p, int keyLength)

{

byte[] iv = new byte[AESbytelength];

new SecureRandom ().nextBytes(iv);

ivp = new IvParameterSpec(iv);

this.keyLength = keyLength;

}

public SecretKey AESKeyGen

(int kz) throws NoSuchAlgorithmException ,

IllegalArgumentException

{

try

{ //sometimes , AES generate 17 bytes key and it crashes during

// decryption. this try -catch block avoids the AESEncryption

// AESDecryption crashing for 17byte keys

SecretKey key , truncatedkey;

KeyGenerator keygen;

keygen = KeyGenerator.getInstance("AES");

keygen.init(keyLength);

key = keygen.generateKey ();

keyinBytes=key.getEncoded ();

BigInteger bkey = new BigInteger(keyinBytes);

bkey = bkey.mod(Gateway.p);

byte[] newkeyinBytes= new byte [16];

Arrays.fill(keyinBytes , (byte) 1);

newkeyinBytes = Arrays.copyOf(keyinBytes ,keyinBytes.length

<newkeyinBytes.length? keyinBytes.length: newkeyinBytes.

length);

truncatedkey =new SecretKeySpec(newkeyinBytes ,offset ,

AESbytelength , "AES");

if(truncatedkey.getEncoded ().length >16)

System.out.printf("Warning:␣Long␣key␣after␣truncating");

return truncatedkey;

}

catch (Exception e)

{

System.out.println("Exception␣:␣offset␣values␣="+","+offset+"

,\n"

52

+AESbytelength+","+keyinBytes.

length);

KeyGenerator keygen2= KeyGenerator.getInstance("AES");

return keygen2.generateKey ();

}

}

public static String AESencryptECB

(SecretKey content , SecretKey key) throws Exception

{

byte [] plaintext = content.getEncoded ();

Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");

cipher.init (Cipher.ENCRYPT_MODE , key);

byte[] cipherText = cipher.doFinal(plaintext);

return Base64.getEncoder ().encodeToString(cipherText);

}

public static SecretKey AESDecryptECB

(String ciphertext , SecretKey key) throws Exception

{

Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");

cipher.init (Cipher.DECRYPT_MODE , key);

byte[] plaintext = cipher.doFinal(Base64.getDecoder ().

decode(ciphertext));

SecretKey decryptedkey = new SecretKeySpec(plaintext , "AES");

if(decryptedkey.getEncoded ().length >16)

System.out.printf("Warning:␣Long␣key␣after␣AESDecryptECB");

return decryptedkey;

}

static SecretKey XORAESKeys

(SecretKey key1 , SecretKey key2) throws

NoSuchAlgorithmException

{

SecretKey newkey;

byte [] b1 = key1.getEncoded ();

byte [] b2 = key2.getEncoded ();

int maxlength =b1.length >b2.length? b1.length: b2.length;

byte [] b3 = new byte[maxlength];

if(b1.length < b2.length)

{

for (int i=0; i<b1.length ;i++)

b2[i] = (byte) (b1[i]^b2[i]);

b3 = b2;

}

else

{

for (int i=0; i<b2.length ;i++)

53

b1[i] = (byte) (b1[i]^b2[i]);

b3 = b1;

}

BigInteger bkey = new BigInteger(b3);

bkey = bkey.mod(Gateway.p);

newkey = new SecretKeySpec(bkey.toByteArray (), "AES");

if(newkey.getEncoded ().length >16)

{

System.out.printf

("Warning:Length␣XORAESKeys␣=␣%d%n", newkey.getEncoded ().

length);

newkey= truncateKey(newkey.getEncoded ());

System.out.printf("Truncated␣length␣%d%n",

newkey.getEncoded ().length);

}

return newkey;

}

static SecretKey truncateKey(byte[] key)

{

byte[] truncatedkey= new byte[AESbytelength];

System.arraycopy(key , 0, truncatedkey , 0,

AESbytelength -1);

SecretKey newkey =new SecretKeySpec(truncatedkey ,0,

AESbytelength , "AES");

if(newkey.getEncoded ().length >16)

System.out.printf("Warning:␣Long␣key␣after␣truncateKey");

return newkey;

}

}

A.2 BloomFilter.java

This file contains reused publicly available source code [1]. The bloom filter size can

be adjusted for efficiency, reducing false positive errors.

/*

Java Program to Implement Bloom Filter.This

code is taken from https :// www.sanfoundry.com

/java -program -implement -bloom -filter/

*/

import java.util .*;

import java.security .*;

54

import java.math .*;

import java.nio .*;

/* Class BloomFilter */

class BloomFilter

{

private byte[] set;

private int keySize , size;

private MessageDigest md;

/* Constructor */

public BloomFilter ()

{

// setSize = capacity;

set = new byte [524288]; // testcode: = new byte [4096];

keySize = 128;

size = 0;

ResetBloomFilter ();

}

/* Function to clear bloom set */

public final void ResetBloomFilter ()

{

Arrays.fill(set , (byte)0);

size = 0;

try

{

md = MessageDigest.getInstance("MD5");

}

catch (NoSuchAlgorithmException e)

{

throw new IllegalArgumentException("Error␣:"+

"MD5␣Hash␣not␣found");

}

}

/* Function to get size of objects added */

public int getSize ()

{

return size;

}

/* Function to get hash - MD5 */

private int getHash(int i)

{

md.reset();

byte[] bytes = ByteBuffer.allocate (4)

.putInt(i).array();

md.update(bytes , 0, bytes.length);

55

return Math.abs(new BigInteger (1, md.digest ())

.intValue ()) % (set.length - 1);

}

/* Function to add an object */

public void add(Object obj)

{

ResetBloomFilter ();

int[] tmpset = getSetArray(obj);

for (int i : tmpset)

set[i] = 1;

size ++;

}

/* Function to check is an object is present */

public boolean contains(Object obj)

{

int[] tmpset = getSetArray(obj);

for (int i : tmpset)

if (set[i] != 1)

return false;

return true;

}

/* Function to get set array for an object */

private int[] getSetArray(Object obj)

{

int[] tmpset = new int[keySize];

tmpset [0] = getHash(obj.hashCode ());

for (int i = 1; i < keySize; i++)

tmpset[i] = (getHash(tmpset[i - 1]));

return tmpset;

}

}

A.3 Device.java

Handles data structure that stores the group of devices as a list. A maximum of

each 8 devices can be contained in the device list. Each device contains a list 4 of

keys from the Key Heap tree at the gateway server.

import java.math.BigInteger;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import javax.crypto.SecretKey;

import javax.crypto.spec.SecretKeySpec;

56

public class Device

{

SecretKey [] devicekeys;

MessageDigest md;

BigInteger p = Gateway.p;

public Device ()

{

devicekeys = new SecretKey [3];

}

boolean ReplaceGroupKeyatdevice(String encryptedkey)

throws Exception

{

SecretKey newgroupKey = AES.AESDecryptECB(encryptedkey ,

(SecretKey) this.devicekeys [0]);

if (newgroupKey != null) {

UpdateDeviceKeys(newgroupKey);

return true;

}

return false;

}

private BigInteger getHash(BigInteger input)

{

try

{

md = MessageDigest.getInstance("MD5");

}

catch (NoSuchAlgorithmException e)

{

throw new IllegalArgumentException

("Error␣:␣MD5␣Hash␣not␣found");

}

md.reset ();

byte[] bytes = input.toByteArray ();

md.update(bytes , 0, bytes.length);

return new BigInteger(md.digest ());

}

boolean AttemptToResolvePolynomialandReplaceKeys(

BigInteger [] Poly , BloomFilter bf) throws

NoSuchAlgorithmException

{

for (int k = Gateway.treelevels; k >= 0; k--)

{

57

SecretKey key = (SecretKey) this.devicekeys[k];

BigInteger ts = Poly [3];

BigInteger K = getHash

(new BigInteger(key.getEncoded ()).add(ts));

BigInteger param1 = K.modPow(new BigInteger("3"), p);

//3= Gateway.treelevels

BigInteger param2 = (K.modPow(BigInteger.TWO , p).

multiply(Poly [0]).mod(p)).mod(p);

BigInteger param3 = (K.multiply(Poly [1])).mod(p);

BigInteger param4 = Poly [2]. mod(p);

param1 = param1.add(param3);

param2 = param2.add(param4);

BigInteger probableGroupKey = param1.subtract(param2);

probableGroupKey = probableGroupKey.mod(p);

if (probableGroupKey.signum () > 0)

probableGroupKey = probableGroupKey.subtract(p);

probableGroupKey = BigInteger.ZERO.subtract(probableGroupKey);

if (bf.contains(probableGroupKey))

{

if (probableGroupKey.toByteArray ().length > Gateway.keyLength)

{

System.out.printf("Warning:␣"+

"Long␣key␣after␣BF%n.␣Program␣will␣crash");

}

SecretKey receievedGroupkey = new SecretKeySpec

(probableGroupKey.toByteArray (), "AES");

UpdateDeviceKeys(receievedGroupkey);

return true;

} // if not , try another key from the keylist.

} // end for

return false;

}// end function

public static String print(byte[] bytes)

{

StringBuilder sb = new StringBuilder ();

sb.append("[␣");

for (byte b : bytes)

{

sb.append(String.format("0x%02X␣", b));

}

sb.append("]");

return sb.toString ();

}

58

public void UpdateDeviceKeys(SecretKey groupkey)

throws NoSuchAlgorithmException

{

this.devicekeys [0] = groupkey;

for (int n = this.devicekeys.length - 1; n >= 1; n--)

{

SecretKey subkey = AES.XORAESKeys(this.devicekeys[n],

this.devicekeys[n - 1]);

this.devicekeys[n] = subkey;

}

}

}// end class

A.4 Gateway.java

The Gateway server module maintains the key heap tree. The key heap tree is

created during program initialization, and keys are replaced with new ones each

time a device is added or removed from the device list. The gateway server also

issues keys for the newly added device.

// Variables are made public to optimize memory utilization

// in the repeated testing scenario.

import java.math.BigInteger;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import javax.crypto.SecretKey;

public class Gateway

{

private static Gateway instance=null;

SecretKey [] Heaparray;

AES aes;

int N;// Number of devices or leaf nodes.

int totalkeys; // Number of total nodes in the heap.

public static BigInteger p=

new BigInteger("340161578590472513607668760653655446203");

public static int treelevels =3; //4 levels : 0,1,2 & 3

public static int keyLength =128;

SecretKey nextGroupkey;

Long time = System.currentTimeMillis ();

BigInteger ts = new BigInteger(time.toString ());

BigInteger [] siblingkeys= new BigInteger[treelevels];

59

BigInteger [] poly = new BigInteger[treelevels +1];//+1 for

timestamp

MessageDigest md;

private Gateway () throws NoSuchAlgorithmException

{

aes = new AES(p, keyLength);

N = (int) Math.pow((double)2, (double)treelevels);

totalkeys = 2*N-1;

CreateHeap ();

}

// singleton instance returning method.

public static synchronized Gateway getinstance ()

throws NoSuchAlgorithmException

{

if (instance ==null)

instance = new Gateway ();

return instance;

}

private final void CreateHeap ()

throws NoSuchAlgorithmException

{

Heaparray = new SecretKey[totalkeys];

for(int i =0;i<totalkeys;i++)

{

SecretKey newSkey =(SecretKey)aes.AESKeyGen(keyLength);

Heaparray[i] =newSkey;

}

}

String getEncryptedNextGroupKey () throws Exception

{

// replace the existing Group key

SecretKey encryptionKey=Heaparray [0];

String encryptednextGroupkey =

AES.AESencryptECB(nextGroupkey , encryptionKey);

return encryptednextGroupkey;

}

void setnextGroupkey () throws Exception

{

nextGroupkey =(SecretKey)aes.AESKeyGen(keyLength);

}

void UpdateHeap () throws NoSuchAlgorithmException

{

Heaparray [0]= nextGroupkey;

int j=0;

60

// Replace the other keys in the heap tree with XOR logic

for(int i =totalkeys -1;i>=1;i--)

{

j=i-1;

Heaparray[i]=AES.XORAESKeys(Heaparray[i],Heaparray[j/2]);

}

}

SecretKey [] GetKeysforNewlyAddedDevice

(int nPosition) throws NoSuchAlgorithmException

{

SecretKey keylist [] = new SecretKey [4];

//copy one key from each level

nPosition +=N;// converting list position to leaf node.

for (int k=0; k<= treelevels;k++)

{

int KeyPos = nPosition/ ((int)Math.pow((double)2, (double)k));

keylist[treelevels -k]= Heaparray[KeyPos -1];

}//end for

return keylist;

}

private BigInteger getHash(BigInteger input)

{

try

{

md = MessageDigest.getInstance("MD5");

}

catch (NoSuchAlgorithmException e)

{

throw new IllegalArgumentException("MD5␣Hash␣Error");

}

md.reset ();

byte[] bytes = input.toByteArray ();

md.update(bytes , 0, bytes.length);

return new BigInteger(md.digest ());

}

BigInteger [] Get3rdDegreePolynomial(int nPosition) throws

Exception

{

BigInteger bnewGroupkey = new BigInteger (nextGroupkey.

getEncoded ());

//copy one key from each level

nPosition +=N;// converting list position to leaf node.

for (int k=0; k<treelevels;k++)

{

61

int KeyPos = nPosition/ ((int)Math.pow((double)2, (double)k));

KeyPos =((KeyPos /2) == (KeyPos -1) /2) ? (KeyPos -1) : (KeyPos +1)

;

siblingkeys[k]= getHash(

new BigInteger(Heaparray[KeyPos -1]. getEncoded ()).add(ts));

}//end for

if(siblingkeys.length == treelevels)

{

poly [0]= siblingkeys [0].

add(siblingkeys [1]. add(siblingkeys [2])); //z1+z2+z3

poly [0]= poly [0]. mod(p);

BigInteger temp1 =(siblingkeys [0]. multiply(siblingkeys [1]));

BigInteger temp2 =(siblingkeys [0]. multiply(siblingkeys [2]));

BigInteger temp3 =(siblingkeys [1]. multiply(siblingkeys [2]));

poly [1] = temp1.add(temp2.add(temp3));//z1z2+z2z3+z1z3

poly [1]= poly [1]. mod(p);

poly [2]= siblingkeys [0]. multiply(siblingkeys [1]).

multiply(siblingkeys [2]);//k+z1z2z3

poly [2]= poly [2]. add(bnewGroupkey);

poly [2]= poly [2]. mod(p);

poly [3]=ts;

}

return poly;

}

BloomFilter GetBloomFilter ()

{

BloomFilter bf = new BloomFilter ();

BigInteger content = new BigInteger(nextGroupkey.getEncoded ())

;

content = content.mod(p);

bf.add(content);

return bf;

}

}

A.5 Keymanager.java

Contains the application main that issues command to gateway and device on adding

or removing of devices.

// Application Main. Editor used: Microsoft VS Code.

62

// Application Main. Editor used: Microsoft VS Code.

import java.math.BigInteger;

import java.util.Scanner;

public class KeyManager

{

static Device [] devicelist;

static Gateway gwyServer;

static final int maxdevices =8;

static long memadd ,timeadd;

static Runtime runtime;

static long usedMemoryBefore , usedMemoryAfter;

static String addmem , removemem;

static String addtime , removetime;

static long start , end;

static boolean nret=false;

public static void main(String [] args) throws Exception

{

devicelist = new Device[maxdevices];

gwyServer = Gateway.getinstance ();

Scanner input;

int choice =0;

runtime = Runtime.getRuntime ();

input = new Scanner(System.in);

System.out.println("Measures␣Time␣&␣Memory.");

System.out.println("Press␣1␣and␣wait␣1␣minute.");

choice = input.nextInt ();

addmem = new String ();

removemem = new String ();

addtime = new String ();

removetime = new String ();

switch (choice)

{

case 1 :

for (int i=0; i <101; i++)

{

for (int j=0; j<devicelist.length;j++)

{

AddDevice(j);

}

for (int j=devicelist.length -1; j>=0;j--)

{

RemoveDevice(j);

}

addmem +="\n";

63

addtime +="\n";

removemem +="\n";

removetime +="\n";

}

System.out.println("MEMORY␣USAGE");

System.out.println("ADD");

System.out.print(addmem);

System.out.println("REMOVE");

System.out.print(removemem);

System.out.println("TIME␣USAGE");

System.out.println("ADD");

System.out.print(addtime);

System.out.println("REMOVE");

System.out.print(removetime);

break;

default:

break;

}

input.close ();

}

static boolean AddDevice(int nPos) throws Exception

{

usedMemoryBefore = runtime.totalMemory ()

- runtime.freeMemory ();

start = System.nanoTime ();

int emptyslotes =0;

//Get a new groupkey encrypted with current groupkey.

// Broadcast it to all devices.

gwyServer.setnextGroupkey ();

String encryptedkey = gwyServer.getEncryptedNextGroupKey ();

for (int i=0; i<devicelist.length; i++)

{

if(devicelist[i]!= null)// replace group key only

// if there is at least one device existing.

{

nret = devicelist[i]. ReplaceGroupKeyatdevice(encryptedkey);

}

else

{

emptyslotes +=1;

}

64

usedMemoryAfter = runtime.totalMemory () - runtime.freeMemory ()

;

}

if(emptyslotes == devicelist.length)// first device.

nret=true;

// Device keys update successful. Update heap , add new device.

if(nret)

{

gwyServer.UpdateHeap ();

Device newdevice = new Device ();

newdevice.devicekeys= gwyServer.GetKeysforNewlyAddedDevice(

nPos);

devicelist[nPos]= newdevice;

}

end = System.nanoTime ();

memadd = usedMemoryAfter -usedMemoryBefore;

memadd = memadd /1000; //kb

addmem = addmem+",␣"+ memadd;

timeadd = (end -start);

timeadd =timeadd /1000; // microseconds

addtime = addtime+",␣"+ timeadd;

Thread.sleep (1);

return nret;

}

static boolean RemoveDevice(int nPosition) throws Exception

{

usedMemoryBefore = runtime.totalMemory ()

- runtime.freeMemory ();

start = System.nanoTime ();

int remainingdevicescount = 0;

gwyServer.setnextGroupkey ();

for (int i=0; i<devicelist.length;i++)

{

if(devicelist[i]!= null)// finds the first empty slot

remainingdevicescount ++;

}

if(devicelist[nPosition]== null)

return false;

if(remainingdevicescount ==0)//if we are removing

// the last device , no group key communication needed.

{

return false;//do nothing

}

else

65

{

devicelist[nPosition]= null;// Remove the device

BigInteger [] polyCoeffients = gwyServer.

Get3rdDegreePolynomial(nPosition);

BloomFilter bf = gwyServer.GetBloomFilter ();// returns next

Gkey bf.

int replaced=0, count =0;

for (int i=0; i<devicelist.length; i++)

{

if (devicelist[i]!= null)

{ count ++;

if(devicelist[i].

AttemptToResolvePolynomialandReplaceKeys(

polyCoeffients , bf))

replaced ++;

usedMemoryAfter = runtime.totalMemory () - runtime.

freeMemory ();

}

}

if(replaced !=count)

System.out.printf("Error:␣Only␣%d␣out␣of␣"+

"%d␣devicekeys␣updated%n",replaced

, count);

gwyServer.UpdateHeap ();

}

end = System.nanoTime ();

memadd = usedMemoryAfter -usedMemoryBefore;

removemem = removemem+",␣"+ memadd;

timeadd = (end -start);

timeadd =timeadd /1000;

removetime = removetime+",␣"+ timeadd;

Thread.sleep (1);

return true;

}

}

66

Vita

Candidate’s full name: Vishnu Prasanth Vikraman Pillai

Bachelor of Technology in Computer Science and Engineering, Mahatma Gandhi
University, Kerala, India, 2006.

Master of Computer Science, University of New Brunswick, Fredericton, Canada,
Expected May 2024.

Publications:

1. Vishnu Prasanth Vikraman Pillai, Zeming Zhou, Songnian Zhang, Rongxing
Lu and Mohammad Mamun. An Efficient Dynamic Key Management Scheme
for IoT Devices in Aging in Place Systems. 2023 IEEE/CIC International
Conference on Communications in China (ICCC), August 2023

Posters:

1. Vishnu Prasanth Vikraman Pillai, Zeming Zhou, Songnian Zhang, Rongxing Lu
and Mohammad Mamun. An Efficient Dynamic Key Management Scheme for
IoT Devices in Aging in Place Systems, Research Exposition 2023, Fredericton,
Canada, April 14, 2023.

