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Abstract 

The purpose of this research was to investigate the use of near infrared 

hyperspectral imaging (NIR-HSI) for in-line moisture content (MC) and basic specific 

gravity (BSG) estimation of thawed and frozen logs as well as of boards. We also 

developed a method to classify the logs according to their MC, BSG, species, and log 

state (frozen and thawed). Samples from three different species (black spruce, quaking 

aspen, balsam poplar) for logs and one species (subalpine fir) for board were collected 

and dried in different steps. We also considered frozen samples for logs. For each step 

hyperspectral NIR images and weight measurements were acquired. 

The images were subjected to the following processing. They were first 

calibrated into reflectance. Then, bad pixels were found and replaced by a corrected 

value using a median filter. A new method was developed to find and remove abnormal 

spectra. It consisted of a combination of the boxplot method and principle component 

analysis (PCA). The remaining spectra were converted into absorbance spectra. The raw 

absorbance spectra were subjected to several spectral transformations, such as the 

multiplicative scatter correction (MSC), as well as the first, and second derivatives. 

For the board, the best PLS model was found in using raw spectra for both MC 

and BSG estimation and had an RMSEV of 10.8% and 0.007, respectively. For the log 

samples, PLS models were calibrated by considering two factors: log state (thawed and 

frozen conditions) and species, and their combination. Then the models were applied to 

the whole board images in order to produce 2D images of MC and BSG. 
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Models were better with thawed logs than with frozen logs. The models 

estimated MC with an RMSE that varies between 2.94% in the case of black spruce to 

15.49% in the case of balsam poplar. The modelôs accuracy for BSG estimation was the 

best when all the three species were used together (RMSEV=0.036). PLS discriminant 

analysis (PLS-DA) was also applied to sort log samples into three MC or BSG classes, 

species, or the log state (frozen and thawed). The overall accuracy of PLS-DA models 

were above 72% for both MC and BSG sorting and above 85% for the species and log 

state sorting. 

Finally, the Kubelka-Munk theory equations were employed to calculate several 

wood optical properties from visible-near-infrared reflectance spectra acquired over thin 

samples of quaking aspen and black spruce. The properties included absorption and 

scattering coefficients, transport absorption, reduced scattering, and penetration depth. 

The sample MC was then estimated using PLS regression method from the absorption and 

scattering coefficient spectra. Absorption coefficient spectra between 800 and 1800 nm can 

provide PLS models having an acceptable accuracy for MC estimation (Ὑ =0.83 and 

RMSECV=2.32%), regardless of the species. 

  



iv 

 

Acknowledgments 

I would like to express my deep appreciation to my supervisor, Prof. Brigitte 

Leblon, for her support and guidance throughout the research. Her continued support led 

me to the right way. I would also like to extend my appreciation to my advisory 

committee members: Dr. James Burger, BurgerMetrics Co, Dr. Joseph Nader, Ms. Zarin 

Pirouz, and Mr. Kevin Groves, FPInnovations, for their insightful comments and 

encouragement and their careful review of my manuscripts and the thesis itself. Dr. 

James Burger suddenly passed away on 6 September 2014. He was one of the smartest 

and the most energetic people I know. I will be forever be thankful to him. My thesis 

and my manuscripts were written in memoriam of him. I would also like to express my 

gratitude to Dr. Satoru Tsuchikawa, Nagoya University, who helped me for the last 

manuscript. 

My sincere appreciation is extended to Gorden Chow and Dr. Hui Wan from 

FPInnovations, to my student fellows Dr. Guillaume Hans and Clevan Lamason from 

UNB; to Dr. Armand LaRocque, Dean McCarthy from UNB and Kathie Phung who 

helped me to collect the data and finish the experiments. Without their help, I was not 

being able to finish my experiment at the right time. Dr. Guillaume Hans also helped me 

for the last manuscript. 

The financial support for this research was provided through a Natural Science 

and Engineering Research Council of Canada (NSERC) Strategic Grant awarded to 

Prof. B. Leblon et al., through the New Brunswick Innovation Foundation (NBIF) 



v 

 

Research Assistantship Initiative Program grant awarded to Prof. B. Leblon, and through 

FPInnovations . I also got a scholarship from the Forest Products Society in 2014. 

Last but not least, I would like to give my special thanks to my parents and 

siblings who always supported me spiritually throughout these years in Canada despite 

the distance and throughout my life in general. This thesis is dedicated to them. 

  



vi 

 

Table of contents 

Abstract ............................................................................................................................ ii  

Acknowledgments .......................................................................................................... iv 

Table of contents ............................................................................................................ vi 

List of tables ................................................................................................................... xii  

List of figures ................................................................................................................ xiii  

List of acronyms .......................................................................................................... xvii  

CHAPTER 1. INTRODUCTION  .................................................................................. 1 

1.1. GENERAL CONTEXT ................................................................................................. 1 

1.2. WOOD PROPERTIES .................................................................................................. 2 

1.2.1. Chemistry ........................................................................................................ 3 

1.2.2. Heterogeneity .................................................................................................. 4 

1.2.2.1. Cell wall ............................................................................................................. 5 

1.2.2.2. Hardwood vs. softwood ..................................................................................... 6 

1.2.2.3. Stem, length, and wood age ............................................................................... 7 

1.2.2.4. Compression Wood and Knots .......................................................................... 9 

1.2.3. Anisotropy ..................................................................................................... 10 

1.2.4. Hygroscopicity .............................................................................................. 11 

1.2.5. Moisture content............................................................................................ 12 

1.2.6. Density and Basic specific gravity ................................................................ 14 

1.3. NON-DESTRUCTIVE TESTING OF WOOD PROPERTIES ............................................... 18 

1.3.1. X-ray .............................................................................................................. 20 

1.3.2. Visible and NIR spectroscopy ....................................................................... 21 

1.3.3. Thermal infrared (TIR) ................................................................................. 22 

1.3.4. Microwave and radio frequency (RF) ........................................................... 23 



vii  

 

1.3.5. Acoustic ......................................................................................................... 23 

1.4. NIR SPECTROSCOPY .............................................................................................. 24 

1.4.1. Principle ........................................................................................................ 24 

1.4.2. Chemometrics ................................................................................................ 27 

1.4.3. Spectrum transformation ............................................................................... 30 

1.4.4. Wood properties prediction........................................................................... 32 

1.4.5. Kubelka-Munk theory and optical properties ............................................... 34 

1.4.6. Factors influencing the NIR spectra and resulting estimation ..................... 38 

1.4.6.1. Species ............................................................................................................. 38 

1.4.6.2. Anisotropy ........................................................................................................ 39 

1.4.6.3. Hygroscopicity ................................................................................................. 40 

1.4.6.4. Frozen and thawed conditions .......................................................................... 44 

1.5. VIS-NIR HYPERSPECTRAL IMAGING ..................................................................... 45 

1.5.1. Hyperspectral Imaging systems .................................................................... 45 

1.5.2. Image analysis methods ................................................................................ 50 

1.5.2.1. Image calibration.............................................................................................. 51 

1.5.2.2. Bad pixels ......................................................................................................... 52 

1.5.2.3. Abnormal spectra ............................................................................................. 53 

1.5.3. Wood properties prediction........................................................................... 56 

1.6. THESIS GOAL, OBJECTIVES, AND HYPOTHESES ....................................................... 58 

1.6.1. Image processing method .............................................................................. 60 

1.6.2. MC and BSG 2D images ............................................................................... 61 

1.6.3. Wood MC and other optical wood properties using the Kubelka-Munk theory

 ................................................................................................................................. 63 



viii  

 

1.7. THESIS ORGANIZATION .......................................................................................... 65 

1.8. REFERENCES ......................................................................................................... 68 

CHAPTER 2. USING NEAR-INFRARED HYPERSPECTRAL IMAGES ON 

SUBALPINE FIR BOARD - PART 1: MOISTURE CON TENT ESTIMATION . 70 

2.1. ABSTRACT ............................................................................................................. 70 

2.2. INTRODUCTION ...................................................................................................... 71 

2.3. MATERIALS AND METHODS ................................................................................... 74 

2.3.1. Sampling and moisture measurements .......................................................... 74 

2.3.2. Image acquisition .......................................................................................... 78 

2.3.3. Image processing .......................................................................................... 81 

2.3.3.1. Image calibration.............................................................................................. 82 

2.3.3.2. Bad pixels ......................................................................................................... 83 

2.3.3.3. Finding small samples in each image............................................................... 86 

2.3.3.4. Abnormal spectra ............................................................................................. 87 

2.4. PLS MODELING ..................................................................................................... 94 

2.4.1. Results ........................................................................................................... 96 

2.4.2. Discussion ................................................................................................... 102 

2.5. CONCLUSIONS ..................................................................................................... 104 

2.6. ACKNOWLEDGEMENTS ........................................................................................ 106 

2.7. REFERENCES ....................................................................................................... 107 

CHAPTER 3. USING NEAR-INFRARED HYPERSPECTRAL IMAGES ON 

SUBALPINE FIR BOARD - PART 2: DENSITY AND BASIC SPECIFIC 

GRAVITY ESTIMATION  ......................................................................................... 106 

3.1. ABSTRACT ........................................................................................................... 106 

3.2. INTRODUCTION .................................................................................................... 107 



ix 

 

3.3. MATERIALS AND METHODS ................................................................................. 119 

3.3.1. Sampling and ɟMC /BSG determination ....................................................... 119 

3.3.2. Image Processing and PLS Modeling ......................................................... 122 

3.4. RESULTS .............................................................................................................. 124 

3.5. DISCUSSION ......................................................................................................... 137 

3.6. CONCLUSIONS ..................................................................................................... 140 

3.7. ACKNOWLEDGEMENTS ........................................................................................ 142 

3.8. REFERENCES ....................................................................................................... 143 

CHAPTER 4. PREDICTIO N OF WOOD PROPERTIES FOR THAWED AND 

FROZEN LOGS OF QUAKI NG ASPEN, BALSAM POPLAR, AND BLACK 

SPRUCE FROM NEAR-INFRARED HYPERSPECTRAL IMAGES  ................. 144 

4.1. ABSTRACT ........................................................................................................... 144 

4.2. INTRODUCTION .................................................................................................... 145 

4.3. MATERIALS AND METHODS ................................................................................. 148 

4.3.1. Sample origin .............................................................................................. 148 

4.3.2. Sample preparation and wood property measurements ............................. 149 

4.3.3. NIR-HSI image acquisition ......................................................................... 151 

4.3.4. Multivariate analysis ................................................................................... 151 

4.4. RESULTS .............................................................................................................. 154 

4.4.1. Wood properties .......................................................................................... 154 

4.4.2. NIR spectra by hyperspectral imaging ........................................................ 155 

4.4.3. MC modeling ............................................................................................... 157 

4.4.4. BSG modeling ............................................................................................. 162 

4.4.5. PLS Discriminant Analysis (DA) ................................................................ 167 

4.5. DISCUSSION ......................................................................................................... 169 



x 

 

4.5.1. Wood property measurements ..................................................................... 169 

4.5.2. NIR spectra ................................................................................................. 171 

4.5.3. MC modeling ............................................................................................... 173 

4.5.4. BSG modeling ............................................................................................. 175 

4.5.5. PLS-DA ....................................................................................................... 177 

4.6. CONCLUSION .................................................................................................. 177 

4.7. ACKNOWLEDGEMENTS ........................................................................................ 179 

4.8. REFERENCES ....................................................................................................... 180 

CHAPTER 5. DETERMINA TION OF OPTICAL PARAMETERS AND 

MOISTURE CONTENT OF WOOD WITH VISIBLE -NIR SPECTROSCOPY 182 

5.1. ABSTRACT ........................................................................................................... 182 

5.2. INTRODUCTION .................................................................................................... 183 

5.3. MATERIALS AND METHODS ................................................................................. 188 

5.3.1. Sample preparation ..................................................................................... 188 

5.3.2. Spectral measurements................................................................................ 190 

5.3.3. Multivariate analysis ................................................................................... 193 

5.4. RESULTS .............................................................................................................. 195 

5.4.1. Visible and NIR reflectance and absorbance .............................................. 195 

5.4.2.  K and S spectra ........................................................................................... 198 

5.4.3. MC modeling ............................................................................................... 201 

5.4.4. Other optical parameters ............................................................................ 204 

5.5. DISCUSSION ......................................................................................................... 207 

5.5.1. VIS-NIR spectra .......................................................................................... 207 

5.5.2. K and S spectra ........................................................................................... 208 



xi 

 

5.5.3. MC modeling ............................................................................................... 211 

5.5.4. Other optical parameters ............................................................................ 211 

5.6. CONCLUSIONS ..................................................................................................... 213 

5.7. ACKNOWLEDGEMENTS ........................................................................................ 214 

5.8. REFERENCES ....................................................................................................... 216 

CHAPTER 6. CONCLUSIONS ................................................................................. 222 

Appendix A. Technical details of the sensors ........................................................... 222 

Appendix B. MATLAB codes .................................................................................... 224 

Appendix C. Letter of permission from the journals .............................................. 231 

Appendix D. Curriculum Vitae  

 

  



xii  

 

List of tables 

Table 1-1: Main wood components (in %) for hardwood and softwood (Pereira et al., 

2003, Walker, 2006, Rowell, 2013). .................................................................................. 3 

Table 1-2: Tracheid dimensions for both juvenile and mature wood of Norway spruce 

(Brandstrom, 2001). .......................................................................................................... 7 

Table 1-3: Tracheid wall thickness of Norway spruce latewood and earlywood 

(Brandstrom, 2001). .......................................................................................................... 8 

Table 1-4: Commercial X-ray sensor applied to wood products. ................................... 21 

Table 2-1: Comparison of the PLS models (*) computed with the median spectra as a 

function of the transformation method ............................................................................ 97 

Table 2-2: Comparison of the PLS models(*) computed with the raw spectra between a) 

median spectra and b) 100 spectra ................................................................................. 98 

Table 3-1: Literature review of PLS predicting models for air dry density (ɟMC) 

estimation with spot NIR spectroscopy measurements ................................................. 112 

Table 3-2: Literature review of PLS predicting models for BSG (1) with spot NIR 

spectroscopy measurements .......................................................................................... 112 

Table 3-3: Statistics of the PLS calibration and validation data-set for ɟMC and BSG. 129 

Table 4-1: Statistics for basic specific gravity and moisture content measurements in the 

case of quaking aspen (Populus tremuloides Michx.), balsam poplar (Populus 

balsamifera L.), and black spruce (Picea mariana Mill.) samples ............................... 154 

Table 4-2: PLS models for moisture content (MC % oven-dry basis) prediction 

according to the species and log state using multi scatter corrected (MSC) spectra. .. 159 

Table 4-3: PLS models for basic specific gravity (BSG) prediction according to the 

species and log state using raw spectra acquired over samples with high-MC (MC > 

40% for quaking aspen, 80% for balsam poplar and 25% for black spruce) ............... 163 

Table 4-4: PLS models for basic specific gravity (BSG) prediction according to the 

species and log state using the raw spectra acquired over samples with MC < 12% (dry 

basis) ............................................................................................................................. 164 

Table 4-5: PLS-DA models (*) for log sorting according to their moisture content (MC), 

basic specific gravity (BSG), species, or log state. ....................................................... 169 

Table 5-1: PLS models for moisture content (MC in % dry basis) prediction according 

to the species using Kɚ and/or Sɚ, raw absorbance, MSC, 1st and 2nd derivative spectra, 

in two different ranges of wavelengths (N = number of samples used in the model; LV = 

latent variables). ........................................................................................................... 203 

Table 6-1: Best PLS models obtained in this thesis. ..................................................... 224  



xiii  

 

List of figures 

Figure 1-1: Cross section or transversal, tangential, and radial sections of a tree trunk.

 ......................................................................................................................................... 10 

Figure 1-2: Mean and two standard deviations of absorbance spectra for (A) the 

transversal section (B) the tangential section, and (C) the radial section in the case of a 

black spruce sample (MC= 11.5%, BSG= 0.427) .......................................................... 11 

Figure 1-3: Specular and diffuse reflection mode .......................................................... 26 

Figure 1-4: Determination of the optimal number of PLS latent variables (LV) as a 

function of the RMSECV. The optimal number of PLS latent variables is 6. ................. 30 

Figure 1-5: Influence of the species on the MS-corrected spectra acquired over the 

transversal section of thawed samples. All the samples have an MC of 12% and have 

similar BSG (BSGaspen = 0.44, BSGpoplar = 0.43, BSGspruce = 0.46). ............................... 39 

Figure 1-6: Absorbance spectra as a function of MC for selected thawed balsam poplar 

samples. ........................................................................................................................... 41 

Figure 1-7: Absorbance spectra as a function of BSG for a) selected black spruce 

samples (a) covering the whole MC range (b) with low MC (<12%). ........................... 43 

Figure 1-8: Second derivative corrected spectra for a frozen and thawed black spruce 

sample (MC= 18.1%, BSG= 0.422) and detailed snapshots of the spectra showing the 

spectral shift due to changes in log states. The spectra have been acquired on 

transversal sections. ........................................................................................................ 45 

Figure 1-9: Hypercube data of a wood sample, and corresponding spectrum for a 

particular pixel. ............................................................................................................... 47 

Figure 1-10: Main components of a line scan hyperspectral imaging system. .............. 49 

Figure 1-11: Raw spectra contains bad pixel, which can be recovered by a median filter

 ......................................................................................................................................... 53 

Figure 1-12: Reflectance spectra for a sample that also contain abnormal spectra. ..... 54 

Figure 2-1: Location of the samples extracted from the whole board (a) tangential 

section view and (b) cross-section view. ......................................................................... 75 

Figure 2-2: Drying curves of three small samples extracted from board 8 and 14, 

respectively. ..................................................................................................................... 77 

Figure 2-3: Main components of the hyperspectral imaging system. ............................. 78 

Figure 2-4: Image of individual samples. ....................................................................... 81 

Figure 2-5: Flowchart of the image processing method used in the study. .................... 82 

Figure 2-6: Location of the bad pixels on the imaged frame (number of bad cases = 

2692, number of good cases = 67200). ........................................................................... 85 

Figure 2-7: Raw and median-filtered spectra. ................................................................ 86 

Figure 2-8: Reflectance spectra for a sample that include also the abnormal spectra. . 87 

Figure 2-9:  Location of the spectra in the PC1/PC2 plane allowing identification of 

abnormal spectra. ........................................................................................................... 88 



xiv 

 

Figure 2-10: Distribution of the Mahalanobis distances. The gray crosses in the top of 

the box are the abnormal spectra. The number of data in each category (numbered with 

a Roman letter) and the corresponding percentage of the whole data set are also 

displayed. ........................................................................................................................ 90 

Figure 2-11:  Location of the abnormal spectra in the sample image. They are displayed 

as dark pixels. ................................................................................................................. 91 

Figure 2-12: Comparison between the image-based absorbance spectra and a spectrum 

acquired with a handheld NIR spectrometer. (a) with the abnormal ones and. (b) 

without the abnormal ones. ............................................................................................. 93 

Figure 2-13: Determination of the optimal number of PLS latent variables as a function 

of the RMSECV (in % dry weight). The optimal number of PLS latent variables (6) 

corresponds to the minimum RMSECV. ........................................................................... 96 

Figure 2-14: PLS model built with 6 latent variables using the median spectra of each 

sample for (A) the calibration data set and (B) validation data set................................ 98 

Figure 2-15: 2D images of moisture content for small samples and their corresponding 

MC histogram. The samples have been selected to represent the whole range of MC 

variations. ..................................................................................................................... 100 

Figure 2-16:  2D image of moisture content for one whole board in different drying 

steps. The MC distribution and mean estimated value for each board is also presented.

 ....................................................................................................................................... 101 

Figure 2-17: Panchromatic image of the surface of the bottom left sample of 

Figure 2-15. .................................................................................................................. 104 

Figure 3-1: Distribution histogram for (a) ɟMC (kg/m3) and (b) BSG of all the samples.

 ....................................................................................................................................... 125 

Figure 3-2: Absorbance spectra of a sample having increasing ɟMC (kg/m3) as moisture 

content increases. The sample has a BSG of 0.355....................................................... 126 

Figure 3-3: Absorbance spectra as a function of BSG for (a) selected samples covering 

the whole MC range (b) samples with low MC (<12%). .............................................. 128 

Figure 3-4: Calibration and validation PLS models for ɟMC (kg/m3) built with 8 latent 

variables. The statistics associated with each model are given in Table 3-1. .............. 130 

Figure 3-5: Relationship between the first PC of PCA and BSG for different levels of 

MC. ................................................................................................................................ 131 

Figure 3-6: First five X-loadings of the PLS models for BSG with the whole data-set. 132 

Figure 3-7: Comparison of the variation explained by the BSG model fitted with the 

whole data set and with low MC samples. .................................................................... 132 

Figure 3-8: Calibration and validation PLS models for BSG built with 9 latent variables 

for low MC (<12%) samples. The statistics associated with each model are given in 

Table 3-3. ...................................................................................................................... 133 

Figure 3-9: 2D ɟMC images for the small samples that were selected to have an 

increasing ɟMC and their corresponding ɟMC distribution histogram. .......................... 135 



xv 

 

Figure 3-10: 2D ɟMC images of a whole board of decreasing ɟMC. .............................. 136 

Figure 3-11: 2D BSG images of a whole board of decreasing BSG. ........................... 137 

Figure 4-1: Designed grid for selecting the small samples. ......................................... 149 

Figure 4-2: Second derivative of MS-corrected spectra for a frozen and thawed black 

spruce sample (MC= 18.1%, BSG= 0.422) and detailed snapshots of the spectra 

showing the spectral shift due to change in log state. The spectra have been acquired on 

transversal sections. ...................................................................................................... 156 

Figure 4-3: Influence of the species on the MS-corrected spectra acquired over the 

transversal section of thawed samples. All the samples have an MC of 12% and have 

similar BSG (BSGaspen= 0.44, BSGpoplar= 0.43, BSGspruce= 0.46). ................................ 157 

Figure 4-4: Specific PLS models for both frozen and thawed wood for MC estimation 

using MS-corrected spectra as a function of the species. The models have 8, 6, and 5 

LVs, respectively. .......................................................................................................... 160 

Figure 4-5:2D MC images of frozen and thawed logs from different species. .............................. 162 

Figure 4-6: General PLS model for BSG estimation of low MC samples with 11 latent 

variables using raw spectra. The scatter plots of the calibration and validation data sets 

are colored as a function of the species (a, b) and of the log state (c, d). .................... 166 

Figure 4-7: 2D BSG images of the different species in frozen and thawed conditions. 167 

Figure 5-1: Relative location of the samples taken from a disk. .................................. 189 

Figure 5-2: (a) raw and (b) filtered spectra with an adaptive mean filtering in the case 

of black spruce sample (thickness=200 ɛm, MC=7%). ................................................ 192 

Figure 5-3: Reflectance MS-corrected spectra of 400 ɛm thick quaking aspen and black 

spruce samples having an MC of 7%. ........................................................................... 195 

Figure 5-4: Reflectance spectra collected over the quaking aspen samples having an 

MC of 7% as a function of the sample thickness. .......................................................... 197 

Figure 5-5: Absorbances in the 1100, 1680, and 2230 nm wavelength as a function of 

the sample thickness for quaking aspen samples having an MC of 7%. ....................... 197 

Figure 5-6: (a) Kl and (b) Sl spectra computed from the absorbance spectra of black 

spruce and quaking aspen samples having different thicknesses and an MC of 7%. The 

black dashed line corresponds to (a) Kl and (b) Sl spectra determined from Sitka spruce 

samples having an MC of 7% (Tsuchikawa et al. 1996). .............................................. 199 

Figure 5-7: Influence of the sample moisture content on the Kl and Sl spectra for (a) 

and (b) black spruce samples and (c) and (d) quaking aspen samples. ........................ 201 

Figure 5-8: Effect of the species on the (a) transport absorption, (b) reduced scattering, 

and (c) penetration depth spectra derived from mean Kl and Sl spectra for black spruce 

and quaking aspen samples. .......................................................................................... 205 

Figure 5-9: Effect of MC on the transport absorption spectra derived from mean Kl and 

Sl spectra for (a) black spruce and (b) quaking aspen samples. .................................. 206 

Figure 5-10: Effect of the MC on the reduced scattering spectra derived from mean Kl 

and Sl spectra for (a) black spruce and (b) quaking aspen samples. ........................... 206 



xvi 

 

Figure 5-11: Effect of the MC of the penetration depth spectra derived from mean Kl 

and Sl spectra for (a) black spruce and (b) quaking aspen samples. ........................... 207 

  



xvii  

 

List of acronyms 

Acronyms Description 

2D Two-Dimensional 

ANN Artificial Neural Network 

AOTF Acoustic Optical Tunable Filters 

ASD Analytical Spectral Devices 

BD Basic Density 

BSG Basic Specific Gravity 

CCD Charge-Coupled Device 

CS Cross Section 

CV Cross Validation 

DA Discriminant Analysis 

DN Digital Numbers 

EM Electromagnetic 

EMC Equilibrium Moisture Content 

FPS Frame Per Second 

FSP Fiber Saturation Point 

H Hydrogen 

HSI Hyperspectral Images 

K-M Kubelka-Munk 

LCTF Liquid Crystal Tunable Filters 

LV Latent Variable 

MC Moisture Content 

MLR Multiple Linear Regression 

MOE Module of Elasticity 

MOR Module of Rupture 

MSC Multiplicative Scatter Correction 

NDTE Non-Destructive Testing and Evaluation 

NDT Non-Destructive Testing 

NIR Near Infrared 

NIRS Near Infrared Spectroscopy 

OLS Ordinary Least Squares 

OSB Oriented Strand Board 

PCA Principal Component Analysis 

PCR Principal Component Regression 

PLS Partial Least Squares 

R2 Coefficient of Determination 

RDP Ratio of Performance to Deviation 

RH Relative Humidity 

RMSEC Root Mean Square Error of Calibration 

RMSECV Root Mean Square Error of Cross Validation 

RMSEV Root Mean Square Error of Validation 

ROI Region of Interest 



xviii  

 

Acronyms Description 

SNR Signal to Noise Ratio 

SNV Standard Normal Variate 

SVD Singular Value Decomposition 

T Temperature 

VIS Visible 

 



1 

 

ñWe may use wood with intelligence only if we understand wood.ò Frank Lloyd Wright  

Chapter 1. Introduction  

1.1. General context 

The forest products industry plays an important role in the Canadaôs economy. 

Canada has 348 million hectares of forest land, which is equal to 38% of the total land 

area of Canada and 9% of the worldôs total forests. 44% of Canadaôs forests are certified 

as sustainable forests. Canada is the second largest exporter of forest products in the 

world, after the USA. In 2013, Canada reached the first place in forest products trade 

balance with a value of C$ 19.3 billion, which is approximately C$5 billion more than 

the second place, Sweden. The same year, Canadaôs forest industries added $19.8 billion 

to the countryôs GDP. Moreover, the forest industry in Canada has contributed 

extensively to employment and creating jobs. More than 216,500 people were directly 

involved in this industry in 2013. In 2013, the Canadian forest industry achieved a profit 

of C$2.7 billion, which is 152% of 2012 and it was the highest obtained profit over the 

past eight years (Natural Resources Canada, 2015). 

Softwood lumber, structural panels, newsprint, and pulp and paper products are 

the main wood products of the forest industry in Canada. In Canada 47% of the wood 

products are softwood lumber and paper-related materials. In the case of newsprint, 

demand has dropped by 65% since 2000 due to electronic documents being preferred to 

paper documents. Softwood lumber makes up 20% of Canadaôs forest product exports 

(Natural Resources Canada, 2015). The market for lumber during the last few years 
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slightly declined; however, it has restarted to increase because of the US market 

recovery (Natural Resources Canada, 2015) and it has received more attention, due to 

problems related to oil or other non-renewable resources.  

Mechanization of the wood products processing directly affects the final product 

quality. It also decreases the cost of the production chain and environmental impacts by 

decreasing the waste and optimization in drying process. These processes require 

inexpensive, fast, and reliable techniques to estimate diverse wood properties. Non-

destructive testing (NDT) systems have been applied extensively to achieve this 

objective. They allow measuring wood properties without destruction of the samples 

(Bucur, 2003b, Trung and Leblon, 2011). NDT systems also help mechanization process 

in the wood industries by providing information that may not be provided by human 

inspection, because they use other wavelengths than the human eyes. 

1.2. Wood properties 

Understanding of wood microstructure is important because it plays a major role 

in the wood properties estimation. Indeed, the characterization of the wood 

microstructure can help users to quantify the chemical, mechanical, and physical 

properties of wood. Wood properties have a direct relationship with the quality of final 

products. Thus, it is important to measure or estimate wood properties. For example, 

with information on the wood properties, a sophisticated grading system could be 

developed that would guarantee that products meet standards for an optimum cost. 

Estimation of wood properties would also help finding the right material to make the 
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right products. For example, structural lumber requires a high density and pulp and 

paper products require low density raw materials (Saranpaa 2003).  

Depending on the scale, the sample properties can be considered homogeneous 

or not. The scale starts from submicroscopic scale dealing with cellulosic crystals to 

megascopic scale dealing with a group of trees (Bucur, 2003b). This thesis focused on 

the scale between microscopic and mesoscopic dealing with cells and annual rings (mm) 

and tree sections (10 cm), respectively.  

1.2.1. Chemistry 

Water, organic, and mineral constituents form wood. A small amount of 

extractives and inorganics can also be found in trees. In a living tree, water is the 

dominant component, but in dry wood, the main elements in cell walls are sugar-based 

polymers or carbohydrates (65-75%) such as cellulose, hemicellulose, and pectin.  

A summary of wood chemical composition is presented in Table 1-1 for both 

hardwood and softwood species. Softwood species contain generally more lignin than 

hardwood species. However, it is the opposite for the amount of holocellulose, cellulose, 

extractive, and ash (Pereira et al., 2003, Bowyer et al., 2007, Rowell, 2013). 

Table 1-1: Main wood components (in %) for hardwood and softwood (Pereira et al., 

2003, Walker, 2006, Rowell, 2013). 

Species Holocellulose Cellulose Lignin  Extractive Ash 

Hardwood 71.7 ± 5.7 45.4 ± 3.5 23.0 ± 3.0 4 ± 3 0.5 ± 0.3 

Softwood 64.5 ± 4.6 43.7 ± 2.6 28.8 ± 2.6 3 ± 2 0.3 ± 0.1 
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Holocellulose is the major chemical component in wood cell walls, which is the 

combination of cellulose (40ï45%) and hemicelluloses (15-25%). These polymers 

contain a substantial number of hydroxyl groups that can absorb or desorb water 

(Pereira et al., 2003, Rowell, 2013). Lignin exists mainly in the secondary cell wall and 

the spaces between the cell walls, which are middle lamella. Lignin has a complex 

structure compared to cellulose because there is no single repeating unit in its molecular 

structure. It is composed of aromatic polymers of phenyl-propane units. It contains 15-

20% of methoxyl (Pereira et al., 2003, Rowell, 2013). Extractives are the minor 

constituents of the wood cell walls. Typically, they contain organic compounds such as 

fatty acids, fatty alcohol, resin, terpenes, and waxes. The variations in color, smell, and 

durability of wood are due to extractives. Generally, heartwood has more extractives 

than sapwood (Pereira et al., 2003, Bowyer et al., 2007, Rowell, 2013). 

In addition to all organic compounds in wood, there are some inorganic 

compounds also called ashes. Their contribution to forming wood is less than 0.5%. 

Ashes contain different elements; however, more than 80% of them consist of Ca, K, 

and Mg. Ashes exist in the form of oxalates, carbonates, and sulfates, or part of a 

carboxyl group.  

1.2.2. Heterogeneity 

Wood compared to other construction materials is created by nature, so there is 

heterogeneity in the wood chemical and physical properties from the bottom to the top 

of a tree, and from the bark to the pith. Furthermore, wood is vulnerable to climate, 

weathering, and humidity (Panshin and De Zeeuw, 1980). Species have a strong effect 
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on chemical and physical wood properties as well as the structure and types of cells. In 

this section, the main contributors to the wood heterogeneity are explained. 

1.2.2.1. Cell wall 

At the microscopic scale, wood is not homogeneous because of cell 

characteristics. Wood is a composite of different cells and each cell has two different 

regions: the cell wall and lumen. The lumen is void and has no structure, but the cell 

wall is structured in three main regions, which include: the middle lamella, the primary 

wall, and the secondary wall. The main components of the primary and secondary walls 

are pectin and lignin, respectively. The middle lamella is the space between two 

adjacent cells, which is lignified (Panshin and De Zeeuw, 1980, Walker, 2006, Rowell, 

2013). The primary cell wall is characterized by the random orientation of the cellulose 

micro-fibrils. The rest of the wall, which is the secondary cell wall, is composed of three 

layers: S1, S2, and S3 (Barnett and Jeronimidis, 2003, Rowell, 2013). 

S1 is a thin layer and has a large micro-fibril angle (50-70°). The next layer, S2, 

is the most important layer in the cell wall. The overall properties of wood are 

determined by this layer. It has lower lignin content with lower micro-fibril angles (5-

30°). S3 is between S2 and lumen. It is thin, but has high micro-fibril angles (>70°), and 

low lignin content, which makes it suitable for water transpiration (Barnett and 

Jeronimidis, 2003, Rowell, 2013).  
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1.2.2.2. Hardwood vs. softwood 

The main factor responsible for the wood heterogeneity is species. Wood species 

are classified as hardwood (angiosperms) and softwood (gymnosperms). Most of 

softwood species have needle-leaves and are evergreen, and hardwood species are 

usually broad-leaved and deciduous. According to the wood structure, the main 

difference between hardwood and softwood is the existence of vessel elements in 

hardwood, whereas softwoods lack these cells and have a simpler structure. Hardwoods 

also contain a greater degree of variability in cell types (Walker, 2006, Rowell, 2013). 

Tracheids are the main cells in softwood species. Their contribution to the wood 

volume is more than 90%. Typically, they are 2-5 mm long, 50-60 µm wide, and have a 

thickness of 2-8 µm (Bowyer et al., 2007, Tsuchikawa, 2007). Tracheids are responsible 

for water conductivity and the mechanical properties of softwood species. They are 

connected together through circular board pits and they have a longitudinal overlap of 

20-30% with their adjacent cells. The other type of cells in softwood are axial 

parenchyma, resin canal complexes, and rays (Barnett and Jeronimidis, 2003, Rowell, 

2013). 

Hardwood species have fibrous elements, vessel elements, axial parenchyma 

cells, and rays. Compared to softwood, the variation of each cell in terms of size and 

pattern are greater for hardwood species. Vessel elements or pores exist only in 

hardwood for water conduction. They have different sizes, but are much shorter than 

tracheids. Different patterns of pores appear in diffuse porous and ring porous species. 

Fibersô function in hardwood is the same as for the tracheid in softwood. They have a 
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shorter length and their thickness is directly related to wood density and strength, which 

lead to as low density such as for cottonwood or as high density such as for bulletwood 

(Rowell, 2013). 

1.2.2.3. Stem, length, and wood age 

Wood properties also change from the bark to the pith or from the bottom to the 

top of a tree. Juvenile wood is the region, where wood is formed at an early stage, which 

is closer to the pith. From the bottom to the top of the tree, the percentage of juvenile 

wood gradually increases. (Walker, 2006, Bowyer et al., 2007, Rowell, 2013). Juvenile 

wood has a high micro-fibril angle in S2 layer; thus juvenile wood has a tendency to 

have a high longitudinal shrinkage (Bowyer et al., 2007, Rowell, 2013). The percentage 

of juvenile wood is linked to the quality of wood because in juvenile wood, the cell 

length is 20-30% shorter than in mature wood and cell walls are thinner, as shown by 

the tracheid dimensions for both juvenile and mature wood of Norway spruce (Picea 

abies) of Table 1-2 (Brandstrom, 2001). Short cells and thin cell walls are associated 

with a lower density and a lower strength. 

Table 1-2: Tracheid dimensions for both juvenile and mature wood of Norway spruce 

(Brandstrom, 2001). 

Tracheid dimension Juvenile wood Mature wood 

Tracheid length (mm) 1.28ï2.70 2.80ï4.29 

Cell wall thickness (ɛm) 0.80ï4.60 2.10ï7.53 

 

Annual rings also generate wood properties variations and mainly trigger density 

variations. They are built as a function of the temperature and water availability. In 
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summer, when water is abundant, earlywood is built, but in the winter season, latewood 

is formed, which is thicker and denser (Table 1-3). Each spring, the new ring forms, but 

sometimes, false growth rings are built depending on the temperature (Bowyer et al., 

2007). The seasonal effect makes the transition from earlywood to latewood being 

generally sharp for non-tropical species. By contrast, this transition is gradual in tropical 

species because there is no sharp differences between seasons. The size of cell walls in 

growth rings is generally constant, but the lamella from earlywood to latewood 

gradually decrease, and sudden and distinct changes in lamella across the rings can be 

seen (Rowell, 2013).  

Table 1-3: Tracheid wall thickness of Norway spruce latewood and earlywood 

(Brandstrom, 2001). 

 Earlywood (µm) Latewood (µm) 

Radial  3.52 6.23 

Tangential  2.9 4.69 

 

Wood properties are also different in the heartwood and sapwood regions, which 

have different functions. As trees grow up, some parts of the tree gradually become non-

functional in conducting food and water. This region is the heartwood, which typically 

has a darker color, close to pith, and is surrounded by sapwood. Sapwood is conducting 

water with biochemicals, which are mainly starch and lipids. Heartwood also acts as 

storage of some biochemicals such as the extractives. Most of the sapwood cells are 

alive, but the only alive cells in heartwood are parenchyma that are used to store or to 

produce extractives (Rowell, 2013). During the maturation process, the transformation 

of sapwood to heartwood occurs. It has been shown that the formation of heartwood is 
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independent of growth rate and tree size (Bowyer et al., 2007). The heartwood can often 

be detected visually by its dark color because of the presence of extractives and/or by 

measuring chemical components such as, for example, pinosylvin content in Scots pine 

(Bergstrom, 2003).  

1.2.2.4. Compression Wood and Knots 

Variations in wood properties also occur because of wind and gravity, which 

lead to compression in softwood or tension in hardwood. Compression or tension wood 

has a density up to 40% greater than a normal wood and is not desirable. The cell 

structures in compression or tension wood have just S1 and S2 layers with a higher 

micro-fibril angle than the normal wood (Walker, 2006, Bowyer et al., 2007). It is 

important to avoid compression wood in lumber products because it causes longitudinal 

shrinkage and decreases the strength of the products.  

Knots also increase the heterogeneity in wood. They are an imperfection in wood 

products, which appears as a circular dark shape. In softwood, the acceptable average 

volume of knots is 0.5-2.0%. However, this small amount has a drastic impact on wood 

properties and downgrades the quality of lumber. Knot density is more than 1000 kg/m3, 

which can be 2-3 times of the normal woodôs density. Knot chemical properties are also 

different. The amount of resin in knots increases by 30% (Walker, 2006, Bowyer et al., 

2007). 
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1.2.3. Anisotropy 

Wood is an anisotropic material. Indeed, each wood direction has different 

properties, while other materials such as metal, plastic, and glass can be isotropic. In a 

tree, three sections can therefore be defined: cross section or transversal, tangential, and 

radial. In the transversal or cross section, the cell walls, the annual rings, heartwood, and 

sapwood zones are appearing. This surface is perpendicular to the fiber orientation. By 

contrast, radial or tangential sections are characterized by surfaces parallel to the grain 

orientation. The radial direction is from pith to bark and the tangential direction is from 

the bottom to the top of a tree (Bowyer et al., 2007, Rowell, 2013).  

 

Figure 1-1: Cross section or transversal, tangential, and radial sections of a tree trunk. 

 

These sections differ by both their physical properties, which include 

morphology and surface roughness and their chemical properties, which include their 

permeability and molecular composition (Rowell, 2013). The surface roughness of 

radial and tangential sections are similar, but are different than those of cross sections 

because of cell orientation. Wood anisotropy is also responsible for mechanical 
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properties (Forest Products Laboratory, 2010) and light absorption variations. In 

transversal sections, light can penetrate more deeply and absorbed more accordingly 

because this section contains the tracheid cross section (Fujimoto et al., 2008). In 

Figure 1-2, the mean and standard deviations of 1000 absorption spectra between 950 

and 1650 nm for a black spruce sample having a moisture content of 11.5% and a basic 

specific gravity of 0.427 are shown as a function of the sections. The spectra were 

collected by a hyperspectral imaging system. This figure shows that the absorbance 

spectrum of the radial and tangential sections has a lower level and variation than the 

absorbance spectrum of the transversal section. The same pattern was observed with 

other species for instance quaking aspen and balsam poplar. 

 

Figure 1-2: Mean and two standard deviations of absorbance spectra for (A) the 

transversal section (B) the tangential section, and (C) the radial section in the case of a 

black spruce sample (MC= 11.5%, BSG= 0.427) 

 

1.2.4. Hygroscopicity 

Wood is a hygroscopic material, because it has an ability to absorb or desorb 

water from the environment. Wood can exchange water with its environment until an 
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equilibrium moisture content (EMC) is reached. There is a non-linear relationship 

between EMC and the relative humidity (RH) and temperature (T). This relationship is 

represented by a function called sorption isotherm function (Bowyer et al., 2007, Forest 

Products Laboratory, 2010). Wood EMC decreases when the temperature increases or 

when the relative humidity decreases. First, the water inside the lumen, called free 

water, is lost following by the cell wall water, called bound water. Fiber saturation point 

(FSP) is reached when there is no more free water in wood. For most species, FSP is 

around 30%. Below this point, more energy is required to dry wood because adsorption 

forces (hydrogen bonding) hold water molecules. Wood starts to shrink when bound 

water is lost. Conversely, when cell walls absorb water, wood starts to swell. Shrinkage 

and swelling can be defined for each direction of wood as well as according to the wood 

volume. The longitudinal shrinkage is negligible, which makes wood a suitable material 

for construction projects. The radial shrinkage is between 2% and 6%, while the 

tangential shrinkage is 1.5-2 times greater than the radial shrinkage. Generally, the 

shrinkage varies according to the sample size, wood density, and the rate of drying 

(Bowyer et al., 2007, Forest Products Laboratory, 2010).  

1.2.5. Moisture content 

Water in wood has significant effects on all wood properties including its 

physical and mechanical properties. Thus, interactions between wood and water 

influence all steps of the production chain and the final product quality. For example, 

moisture content (MC) variations in wood cause vicissitude and unequal shrinkage. It 

also increases the cost of transportation and decreases the amount of thermal energy by 
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not allowing hydrocarbons to burn (Denig et al., 2000, Bowyer et al., 2007, Forest 

Products Laboratory, 2010). Thus, it is important to estimate MC in all steps of the 

production chain. 

In the wood products industry, the amount of water is expressed as the 

percentage of the oven-dry weight by: 

ὓὅ Ϸ  
ὓ  ὓ

ὓ
ρππ 

Equation 1.1 

 where Mg (kg) is the mass of the moist (green) wood sample and Mod (kg) is the 

mass of the oven-dry wood. The most accurate, reliable method to measure MC is to 

weight the wet sample and then dry it in an oven at 103 ± 2ºC to remove all water. The 

oven-dried sample is then re-weighted. More information about this process can be 

found in method A of ASTM-D4442ï07 (2009). However, this approach is destructive 

and it takes time. Moreover, volatile constituents are removed during the drying process, 

which causes small errors in MC calculation (Skaar, 1988). Some other spot 

measurement tools such as electric moisture meters provide a quick estimation of MC, 

but their accuracy is low for samples with MC above 25%. They mainly include 

resistance (pin type) or dielectric (flat plate) meters (Skaar, 1988). 

In some applications, the wood MC is defined based on the percentage of total 

weight, which is the weight of green or wet wood (Equation 1.2). This definition is 

suitable for the fuel and the pulp and paper industries (Bowyer et al., 2007): 
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ὓὅ Ϸ  
ὓ  ὓ

ὓ
ρππ 

Equation 1.2 

There are many factors contributing to MC variations. In a living tree, the water 

weight can be equal or greater than the dry wood substance weight. Moreover, the water 

distribution is not homogeneous in tree trunks. The green MC of sapwood is higher in 

hardwood than in softwood species (Panshin and De Zeeuw, 1980, Bowyer et al., 2007, 

Forest Products Laboratory, 2010). When a tree is harvested, wood MC gradually starts 

to decrease. During the drying process, regardless of the species, the water moves from 

a high concentration zone to a lower concentration by diffusion. Such diffusion 

produces an increase in the MC variation in the sample. Impermeable regions also 

generate MC variations. For most species, the sapwood is permeable, so its drying rate 

is higher than impermeable regions such as heartwood. Also, some species, such as fir 

and aspen, contain wet-wood or wet pockets. These impermeable zones decrease the 

drying rate and require careful attention during the drying process (Kroll et al., 1992, 

Cai, 2006, Bowyer et al., 2007, Watanabe et al., 2012b). 

1.2.6. Density and Basic specific gravity 

Density or specific gravity is one of the most important wood physical 

properties. Many of wood mechanical properties, heat transmission, diffusion 

coefficient, and pulp yield properties are directly related to the density. Other properties 

such as the wood anatomy, shrinkage, and swelling are also a function of the density. 

Wood with higher density has more cell walls and/or has a higher proportion of 
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latewood. The density of cell walls is 1520 kg/m3 (Walker, 2006, Bowyer et al., 2007), 

so in a piece of quaking aspen with a density of 399 kg/m3, approximately 74% of the 

volume is void or lumen. Knowledge of density is also required to estimate the modulus 

of rupture (MOR) (Wang et al., 2000, Yin et al., 2010) and the modulus of elasticity 

(MOE) (Barnett and Jeronimidis, 2003, Mora et al., 2009) from ultrasonic or acoustics 

measurements. Density monitoring can also be used for early detection of wood decay. 

Indeed, decayed wood is less dense than sound wood because cellulose and lignin in the 

cell walls are consumed or modified by fungal activities (Kelley et al., 2002, Stirling et 

al., 2007). Wood density can help to detect compression wood, which is denser than the 

normal wood (Diaz-Vaz et al., 2009). 

Wood density can be represented using three variables. The first one is the 

density (sensu stricto) at a specific MC (ɟMC), which is the ratio between the mass and 

the volume of the sample at a given moisture content (Forest Products Laboratory, 2010, 

Williamson and Wiemann, 2010): 

MC

MC
MC

V

W
=r  

Equation 1.3  

where: 

¶ ɟMC is the density of the sample at a given moisture content (kg/m3) 

¶ WMC is the mass of the sample at a given MC (kg) 

¶ VMC is the volume of the sample at a given MC (m3) 
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Usually, ɟMC is expressed either for air-dry, oven-dry, or green conditions. The 

oven-dry wood density is mainly related to cellulose, hemicellulose, lignin, and the 

proportion of void space in the wood.  

Another variable to express the wood density is the basic density (BD), which is 

defined as the ratio between the mass of an oven-dry sample to the volume of the same 

sample when it is green (Walker, 2006, Williamson and Wiemann, 2010, Watanabe et 

al., 2012a) 

Green

OD

V

W
BD=  

Equation 1.4  

where: 

¶ WOD is the weight of the oven-dry sample (kg) 

¶ VGreen is the volume of the sample when it is green (m3) 

According to Williamson and Wiemann (2010), the wood volume does not 

change above the fiber saturation point (FSP) (MCFSP around 30%). VGreen can thus be 

considered to be equivalent to the saturation volume that is measured following Method 

B of ASTM-D2395ï07a (2009) after completely soaking the sample in water. 

The third variable is the basic specific gravity (BSG), which is the ratio between 

the basic density (BD) and the water density (Forest Products Laboratory, 2010, 

Williamson and Wiemann, 2010). 
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water

BD
BSG

r
=  

Equation 1.5  

where: 

¶ BD = basic density of the sample (kg/m3) 

¶ ɟwater = water density (kg/m3) which is equal to 1000 kg/m3 or to 1 g/cm3 at 4°C 

and under normal atmospheric pressure 

BD or BSG is the most useful description of wood density, because WOD does not 

depend on the sample MC and because VGreen is constant. BSG was shown to be related to 

cell diameters, cell lengths, cell wall thickness, the proportion of the different cell types 

within the tree, and the presence of extractives (Panshin and De Zeeuw, 1980, Barnett 

and Jeronimidis, 2003). 

It is important to know the wood density variability since it contains information 

about strength variability. Wood density varies according to many factors such as 

species, geographic location, site conditions, location in the trunk of a tree, and genetic 

sources. In many species, the basis of the tree tends to have a higher density than the 

high part of the tree. Generally, in softwood, the density decreases with increasing tree 

height and increases with increasing distance from the pith (Barnett and Jeronimidis, 

2003, Bowyer et al., 2007). In fast growing species, the proportion of cell walls and 

lumen changes and thus affects the density. In severe conditions, compression or tension 

wood, which has a higher density, may occur (Barnett and Jeronimidis, 2003, Hein et 

al., 2009).  
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1.3. Non-destructive testing of wood properties 

Non-destructive testing (NDT) is a science to identify physical, mechanical, 

and/or chemical properties of materials without changing their end-use application and 

retaining sample for further analysis (Bucur, 2003a). Most NDT techniques do not need 

sample preparation or do not require dangerous chemicals. Moreover, they can be fast 

and repeatable over a sample. The NDT techniques have been employed in the wood 

product industry such as for sorting and grading lumber (Ross and Pellerin, 1994). 

NDT applied to wood are very different than those applied to homogeneous 

isotropic materials (Ross and Pellerin, 1994), because of the heterogeneous nature of the 

material. Wood property estimation uncertainties are triggered by woodôs biological 

nature or degradation because of the environment (Bucur, 2003b). 

In wood NDT applications, the radiation storage or attenuation due to the wood 

properties is measured. Therefore, mathematical and/or statistical methods have to be 

employed to relate the measured properties of wood to the recorded radiation. NDT 

techniques used for wood characterization are classified according to the properties 

investigated or to the wavelength of irradiation used by the sensor (Bucur, 2003a, Hans, 

2015). They can also be classified as non-imaging systems, which just provide one 

measurement, or as imaging systems, which give spatial information about the 

properties. In this thesis, we tested a hyperspectral near-infrared (NIR) imaging system 

to produce 2D images of MC and density and a visible-NIR spot spectrometer to 

measure optical properties of wood. 
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In physics, radiation propagation is described in terms of waves or particles. 

From the wave point of view, radiation is an oscillating electromagnetic (EM) field with 

a continuous range of energies or frequencies. An EM wave consists of two mutually 

perpendicular electric and magnetic fields, which are perpendicular to the propagation 

direction. From the particle point of view, radiation consists of packets of energy called 

photons (Stuart, 2004). The range of frequencies starts from radio waves (104 Hz) to 

gamma ray (1020 Hz).  

The energy of each region of the EM spectrum is related to the wavelength or 

frequency of the EM radiation and has been parametrized by the Maxwellôs theory of 

electro- and magneto-dynamics. The energy can be calculated by the following equation 

(Stuart, 2004): 

Ὁ ὬὪ ὬὧȾ‗ 

Equation 1.6 

where c is the speed of light (3 x 108 m/s), ɚ is the wavelength (m) of the 

electromagnetic radiation, f is the frequency of the electromagnetic radiation (Hz), and h 

is Planck's constant (6.626×10ī34 J.s or 4.135×10ī15 eV.s). 

The most common ranges of EM radiation used in NDT sensors that are 

commercially available for industrial applications are X-rays, visible, infrared, thermal 

infrared, and microwave. The infrared range (0.7 ï 1000 µm) is divided into several 

parts: near-infrared (NIR) (700 ï 2500 nm), mid infrared (MIR) (3 ï 30 µm), and far 

http://en.wikipedia.org/wiki/Planck%27s_constant
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infrared (FIR) (30 ï 1000 µm). In this thesis, the NIR wavelengths were used to estimate 

MC, BSG, and optical properties of various wood samples.  

1.3.1. X-ray 

X-ray-based methods measure the attenuation coefficient of the corresponding 

EM radiation. This parameter can be related to wood chemical and physical properties. 

Indeed, X-ray radiations penetrate through the wood and X-ray sensors measure the 

corresponding attenuation coefficient that can be related to wood chemistry, moisture 

content or density (Bucur, 2003a). Bucur (2003a 2003b) and Wei et al. (2011) reviewed 

studies that uses X-ray images acquired over wood samples to measure density 

variations, MC variations for example in wood drying processes, for inspecting logs and 

lumber defects, for determining stability of wooden building elements, in preservation 

of wood monuments and fine arts, for growth rate assessment, for pollution effects on 

trees, and in dendrochronology sudies.  

The first studies of testing X-ray sensors over wood, used systems that were 

designed for medical or airport applications and were not suitable for the wood industry 

(Wei et al. 2011). More recently, commercial X-ray systems were developed for the 

wood industry (Table 1-4). They are mainly multiple view scanners. Only one is a true 

computer tomography (CT) scanner. Images acquired with these scanners allow the 3D 

reconstruction of the wood sample, such as it is shown in Wei et al. (2009), because they 

provide information on the wood sample from a multiple view angle. 
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Table 1-4: Commercial X-ray sensor applied to wood products. 

Wood 

product 

Type of X-

ray scanner 
Scanner name 

Conveyor 

speed 

(m/min) 

Company Website 

Log  Multiple 

views 

Wood-X N/A Bintec Oy http://www.bintec.fi 

OPMES AX1 200 Inray Oy Ltd http://www.inray.fi 

Logeye300 300 MiCROTEC 

GmbH 

http://microtec.eu 

RS-XRay 200(*) Rema 

Control AB 

http://www.remasawco.s

e 

Computer 

tomography 

(CT) 

CT Log 180 MiCROTEC 

GmbH 

http://microtec.eu 

Lumber Multiple 

views 

X-Scan 210 Luxscan http://www.luxscan.com 

Goldeneye 

300/500/600/900 

100 MiCROTEC 

GmbH 

http://microtec.eu 

(* ) pieces/min 

All the devices listed in Table 1-4 are X-ray systems that can measure wood 

properties at a large scale (timber) (Bucur, 2003a, Wei et al., 2011). However, there is 

one high resolution X-ray scanner that is embedded in the SilviScan system that was 

designed to measure several wood properties at a micro scale (cell size) including, 

density, stiffness, micro-fibril angle, and tracheid diameter (Evans, 1994, Shelbourne et 

al., 1997, Evans and Ilic, 2001). For all the X-ray systems, there are some issues in using 

them operationally, because of health and safety concerns and costs (Wei et al., 2011). 

1.3.2. Visible and NIR spectroscopy 

Visible light (450-750 nm) and NIR (750-2500 nm) sensors provide a wide range 

of superficial information about the wood sample. Conventional visible color cameras 

are already used for grading and sorting, and for defect detection (Brunner et al., 1990), 

classification of wood surface features (Butler et al., 2002), species identification (Gigac 

and Fiserova, 2010), and wood quality assessment of the wood surface features (Ruz et 

http://www.bintec.fi/
http://www.inray.fi/
http://microtec.eu/
http://www.remasawco.se/
http://www.remasawco.se/
http://microtec.eu/
http://www.luxscan.com/
http://microtec.eu/
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al., 2005). However, visible cameras show limitations as the result depends on the 

surface wetness as well as on sample aging. Indeed, weathering, aging, and changes in 

MC alter the wood surface color (Gigac and Fiserova, 2010).  

Also visible cameras have a limited used for measuring some wood chemical and 

physical properties, as the main absorption bands of some major wood chemicals are 

located in the near-infrared region. These bands are related to overtones and 

combinations of molecular vibrations as described in Schwanninger et al. (2011) and in 

Leblon et al. (2013). Among all bonds, NIR spectra are more sensitive to hydrogen 

bonding such as CH, NH, and OH. This fact makes NIR spectra suitable for determining 

water content using quantitative or discriminant analysis. However, combinations of 

fundamental overtones are not very strong and in most cases, they are overlapped. These 

issues make the NIR spectra very complex to analyze, but NIR tools have a great 

potential as a versatile and attractive technique for in-line, on-line, or off-line process 

monitoring because they are fast and do not need sample preparation as much as other 

systems (So et al., 2004, Burns and Ciurczak, 2007). 

1.3.3. Thermal infrared (TIR)  

Thermal infrared systems operate in the 3 to 12 µm wavelength range and 

measure the surface temperature image of the sample. They are two kinds of TIR 

systems: active and passive sensors. Active sensors have their own heating source, while 

passive sensors use an external source of heating. The main disadvantage of active 

thermal infrared thermal sensors is that they can induce damage in the sample and the 

main disadvantage of passive sensors is the difficulty of capturing thermal images of 
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wood when the temperature contrast is too low. Both systems also need a fast recording 

system to capture the image (Bucur, 2003a).  

TIR systems were employed for the detection of singularities and defects in 

wood (Lopez et al., 2014). Passive infrared techniques were used for detecting cavities 

(Catena et al., 1990), detection of knots and voids in lumber, because internal defects 

change the thermodynamic behavior of the wood and surface temperature (Burcham et 

al., 2012, Lopez et al., 2014).  

1.3.4. Microwave and radio frequency (RF) 

Microwave techniques are based on the determination of the dielectric properties 

of the material. Wood dielectric properties are directly related to its MC, density, and 

fiber direction (Ramasamy and Moghtaderi, 2010). Microwave signals can penetrate 

through the wood and can provide in-depth information, which may not be seen with 

other systems. However, such sensors are sensitive to vibrations which disturb the 

polarization of the microwave signal (Bucur, 2003a). Microwave systems have been 

used for internal defects and grain direction as well as to assess structural discontinuities 

of logs (Bucur, 2003a). It also has been tested to estimate MC and BSG of different 

wood species (Moschler and Hanson, 2008, Hans, 2015, 2015c, 2015d, Hans et al., 

2015b) and knot detection (Baradit et al., 2009). 

1.3.5. Acoustic 

Ultrasonic techniques record ultrasonic waves reflected or transmitted from the 

sample. As in the case of X-rays, ultrasonic images can be acquired by translation of 
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detectors around the sample at different angles and by measuring the intensity of 

reflected or transmitted waves. However, unlike X-ray, ultrasonic rays do not travel in a 

straight line in heterogeneous samples. Due to this reason, ultrasonic systems require an 

accurate, fast reconstruction algorithm to achieve useful signal from a sample. These 

systems are capable of delivering high resolution images for small samples, standing 

trees, and wood-base composites. Ultrasonic techniques have been used extensively for 

decay detection in both sample and standing trees as well as detection of knots, defect, 

and compression wood (Bucur, 2003a). They were also employed to estimate modulus 

of rupture (MOR) and modulus of elasticity (MOE) of wood samples. However, wood 

density at specific MC is required to find the relationship between acoustic 

measurements and wood mechanical properties (Wang et al., 2000, Yin et al., 2010). 

1.4. NIR spectroscopy 

1.4.1. Principle 

When an EM radiation interacts with a molecule, a quantum of energy is emitted 

or absorbed. The energy of the quantum is equal to the energy between two adjacent 

energy levels of the molecule. However, illuminating a sample with near infrared 

radiations (750-2500 nm) induce vibrational and rotational movements of its molecules. 

For example, for a water molecule (H2O), there are 3 translational, 2 rotational, and 3 

vibrational degrees of freedom associated to fundamental vibrational frequencies 

(Stuart, 2004). 
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In a normal mode, all atoms move in a phase with the same frequency, but with 

different amplitudes. In addition to the fundamental vibration mode, there are first, 

second, and so on overtones and combinations of different vibrational transitions. The 

NIR region have absorption bands that are related to overtones and combination 

vibrations. The intensity of overtone absorption bands is a function of the anharmonicity 

constant (Stuart, 2004, Burns and Ciurczak, 2007). For example, H-based stretching has 

the largest anharmonicity constant and therefore high intensity of overtone absorption 

bands can be seen. As a result, it dominates the NIR region (Burns and Ciurczak, 2007). 

Reflectance is the most common method for capturing NIR spectra. In the 

reflectance mode, diffuse and specular reflection happen (Figure 1-3). Almost 10-15% 

of the reflected light is made of specular reflectance. This reflectance may not be really 

useful because specular photons have not penetrated enough, and they do not carry 

chemical information of the sample (Boldrini et al., 2012). Diffuse reflectances (85-90% 

of the reflected light) contain the signature of the absorption bands. For example, in the 

NIR range, water OH bands exhibit five absorption bands (760, 970, 1190, 1450, 1940 

nm) (Burns and Ciurczak, 2007, Schwanninger et al., 2011), which make NIR 

spectroscopy a promising technique to determine and/or quantify moisture content. 
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Figure 1-3: Specular and diffuse reflection mode 

 

By defining the ratio of the reflected radiation from the sample to the total 

incident radiation the reflectance (Rl) can be calculated by: 

Rl = I/I0 

Equation 1.7 

where I is the reflected light from the sample and I0 is the total incident radiation. 

The absorbance (Al) is then given by: 

Al = Log(1/Rl) 

Equation 1.8 

The amount of a substance can be quantified using the absorbance because 

Al has a relationship to its concentration (c), the molar absorption coefficient (Ů), and 

path length of the radiation (d) (Danson et al., 1992, Stuart, 2004, Burger, 2006) 
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Al = c.Ů.d 

Equation 1.9 

The interpretation of NIR spectra is challenging, because absorption bands can 

be broad and occurrence of overlapping between the absorption bands can occur. In the 

NIR region, there are only first and second overtones (and combination of them) 

whatever the compound. The intensity for the overtones is quite weak, as it is about 0.01 

and 0.001 of the fundamental absorption intensity (Stuart, 2004, Workman and Weyer, 

2012). In addition, the NIR spectra are affected by the sample temperature. For example, 

an increasing temperature will lead to a lower degree of hydrogen bonding in the 

compounds that make the sample and the related absorption bands will shift toward 

lower wavelengths (Stuart, 2004, Burns and Ciurczak, 2007, Workman and Weyer, 

2012). Despite these complexities in analyzing NIR spectra, chemometric techniques 

can be employed to extract useful information from the NIR spectra (Burns and 

Ciurczak, 2007). 

1.4.2. Chemometrics 

Chemometrics can be defined as the application of statistical methods to the 

analysis of experimental data in chemistry. It can be used for qualitative, quantitative, 

and discriminant analyses of NIR spectra (Burns and Ciurczak, 2007). For quantitative 

analysis, Equation 1.9 can be simplified as: 
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c = A*b 

Equation 1.10 

where b = (ed)-1. This equation can also be extended to: 

Y = Xb + e 

Equation 1.11 

where Y is the concentration or response variable, X is the absorbance or 

explanatory variable, b is the coefficient which contains the information about the 

concentration and path length of the radiation, and e represents the error. There are 

several methods to find b of Equation 1.11, such as ordinary least squares (OLS), 

artificial neural network, principal component regression (PCR), and partial least 

squares (PLS) regression. In this thesis, we employed PLS and PLS discriminant 

analysis (PLS-DA) to quantify MC and BSG of wood and to discriminate wood species 

as a function of these wood properties. We also used principal component analysis 

(PCA) to find outliers and abnormal spectra in the image analysis steps. 

PLS regression uses two matrices, predictor or explanatory (X) and response (Y) 

variables, to build a model. The PLS algorithm is mainly employed for quantitative 

analysis, as the range of Y is continuous. PLS can be applied to collinear and noisy data. 

It is also useful, when the number of predictive variables is tremendous. Moreover, both 

X and Y variables do not have to follow a specific distribution function. These 

characteristics make the PLS algorithm the best approach to analyze NIR spectra 

(Martens and Naes, 1989, Wold et al., 2001). 
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In PLS, a new set of variables, called X-scores (T), is defined and is used for the 

modeling of both, X and Y. This variable is a good summary of X and can be multiplied 

by the loading matrix, P, to form X. Compared to multiple linear regression (MLR) or 

PCR, PLS finds the best part of X correlated to Y. The rest of X may contain noises 

and/or variations non-related to Y. This ability of PLS provides a better accuracy than 

other methods (Martens and Naes, 1989, Wold et al., 2001). 

In PLS modeling, it is essential to determine the optimal number of latent 

variables (LV). Using a high number or a low number of LV increases the risk of over-

fitting or under-fitting and decrease the predicting power of the model (Gowen et al., 

2011). The most reliable approach to define the optimum number of LV is the cross-

validation (CV) method. In this approach, the data are divided into different groups. A 

PLS model is calibrated using all groups with the exception of one. The latter group is 

used for prediction purposes and calculate the RMSE (root mean square differences 

between actual and predicted Y) of the cross validation. This process is repeated for 

different number of LV. The optimal number of LV is associated to the first local 

minimum RMSE (Wold et al., 2001). For example, in Figure 1-4, the root mean square 

error of cross validation (RMSEcv) for different LV is presented for a PLS model that 

estimates subalpine fir moisture content. The optimal number of latent variables is 6. 
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Figure 1-4: Determination of the optimal number of PLS latent variables (LV) as a 

function of the RMSECV. The optimal number of PLS latent variables is 6. 

 

PLS-DA is a special case of PLS in which the Y variable is discrete or can be 

presented in a discrete format so that each class is represented by a number (dummy 

variable). This method is suitable for classification and qualification purposes as well as 

for grouping samples with similar characteristics (Szymanska et al., 2012). As in PLS, 

the optimal number of LV can be defined by using a cross-validation method. 

1.4.3. Spectrum transformation 

Before using NIR spectra for quantitative (PLS) or discriminant analysis (PLS-

DA), unwanted effects have to be removed from the spectra because they are not related 

to the response variable (Y). For solid samples like wood, undesirable effects can be 

caused by inhomogeneity in path lengths, radiation scattering, and random or 
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instrumental noise (Wold et al., 1998). Spectra preprocessing can help to improve the 

robustness and accuracy of the models. 

Many transformations for preprocessing spectra have been proposed for 

example: multiplicative scatter correction (MSC) (Isaksson and Naes, 1988, Heigl et al., 

2007), extended multiplicative scatter correction (EMSC) (Martens and Stark, 1991), 

standard normal variate (SNV) (Barnes et al., 1989), and 1st and 2nd derivative 

transformations (Demetriades-Shah et al., 1990). These techniques can reduce physical 

interferences in NIR spectra, while maintaining the chemical information. 

MSC assumes that the scattering coefficients are independent from the 

wavelengths and can be separated from the chemical information (Burger et al., 1997, 

Buddenbaum and Steffens, 2012). This transformation removes both additive and 

multiplicative correction effects by fitting each spectrum to an ideal spectrum that is the 

average of all sample spectra through a least squares calculation. In SNV, spectra are 

first centered and then scaled according to their mean and standard deviation, 

respectively. It was showed, that SNV has a linear relationship to MSC and both 

transformations provide a similar accuracy in quantification analysis (Dhanoa et al., 

1994). In 1st and 2nd derivative spectra, it is assumed that the scattering will be removed 

by subtracting the reflectance from neighborsô wavelength reflectance. Derivative 

analysis of spectra has been proposed mainly in analytical chemistry to suppress 

background signals and to resolve overlapping spectral absorption bands (Demetriades-

Shah et al., 1990, Danson et al., 1992). With derivative analysis, the amount of noise in 

the spectra also increases, which is the main disadvantage of this method. In all of these 
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transformations, a constant scattering coefficient over all wavelengths has been expected 

(Burger et al., 1997). It was also shown that these transformations may remove a small 

portion of chemical information from NIR spectra (Martens et al., 2003).  

1.4.4. Wood properties prediction 

NIR spectroscopy has been used in food and agricultural industry since the 

1950ôs (Workman and Weyer, 2007). This technique has been quickly extended to other 

products, such as forest products. Compared to the traditional method such as oven-dry 

method, spectroscopy has the following advantages (Salzer and Siesler, 2009): 

- It is quick and reliable 

- It does not need sample preparation 

- It extracts more information from single recorded spectra 

- It is a non-destructive technique 

- It can be used by unskilled personnel 

The most useful wavelength NIR range for quantitative and discriminant analysis 

is 900-2500 nm, because below 900 nm the absorption bands are weak. NIR 

spectroscopy has been developed for non-destructive measurements of wood physical 

properties, including estimation of moisture content and basic specific gravity 

(Thygesen, 1994, Thygesen and Lundqvist, 2000b, Defo et al., 2007, Mora et al., 2008, 

Russ et al., 2009, Cooper et al., 2011, Mora et al., 2011a, Xu et al., 2011, Inagaki et al., 

2012, Abasolo et al., 2013, Hans et al., 2013, Haddadi et al., 2015a, 2015b, 2015c, Hans 

et al., 2015a), stiffness and strength (Fujimoto et al., 2007), modulus of elasticity (MOE) 
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and modulus of rupture (MOR) (Gindl et al., 2001, Fujimoto et al., 2008, Xu et al., 

2011), fiber length (Inagaki et al., 2012), shrinkage (Hein, 2012), micro-fibril angle 

(Meder et al., 2010, Hein, 2012), compression strength (Hoffmeyer and Pedersen, 1995), 

species identification (Tsuchikawa et al., 2003, Adedipe et al., 2008, Haartveit and 

Flæte, 2008, Russ et al., 2009, Cooper et al., 2011, Hans et al., 2015a), heartwood and 

sapwood segregation (Bergstrom, 2003, Hans et al., 2015a), juvenile and mature wood 

classification (Lestander et al., 2008) as well as estimation of chemical properties (So et 

al., 2004, Alves et al., 2006, Poke and Raymond, 2006, Sandberg and Sterley, 2009, 

Meder et al., 2010, Downes et al., 2011, Sheng et al., 2011). 

In NIR spectroscopy studies for wood MC or BSG estimation, different factors 

which generate variations of these properties have been taken into account in the 

modeling approach such as temperature (Thygesen and Lundqvist, 2000b, Hans et al., 

2013, 2015a), wood type (heartwood or sapwood) (Karttunen et al., 2008, Hans et al., 

2015a), wood anisotropy (Schimleck et al., 2005, Defo et al., 2007, Fujimoto et al., 

2008), and wavelength range effect (Adedipe and Dawson-Andoh, 2008). In the BSG 

modeling, the effect of MC has also been considered because it influences the spectra 

(Via et al., 2003, Hans et al., 2013, Haddadi et al., 2015c, Hans et al., 2015a). 

Most of the aforementioned NIR spectroscopy studies used single spot 

measurement systems. The spectra obtained from these single spot measurements are 

then related to bulk MC or BSG. This approach does not represent well the spatial 

variability of the wood properties in the sample because biological materials like wood 
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are heterogeneous. However, it is important to monitor such variability in several wood 

manufacturing processes (Olson and Arganbright, 1977, Panshin and De Zeeuw, 1980). 

By contrast, imaging systems can provide spatial information about the entire 

surface of the sample, which make them useful sensors for at-line or on-line process 

monitoring (Lindstrom et al., 2014). Combining imaging systems with NIR 

spectroscopy allows benefiting from both technologies at the same time. It will provide 

a distribution map of the wood properties of a sample, which would allow better process 

optimization along the production chain. More explanation about NIR imaging systems 

will be provided in Section 1.5. 

1.4.5. Kubelka-Munk theory and optical properties 

All the aforementioned studies used statistical analysis to relate the wood 

properties to the NIR measurements. An alternative would be to use a more 

deterministic approach based on physical principles. Tsuchikawa et al. (1996) developed 

an optical model, which explicitly describes the physical interactions between wood 

properties and NIR spectra. Wood is modeled as an aggregate of semi-infinite inclined 

square tubes representing the tracheids with a membrane having a certain thickness. The 

model also assumes that the incident radiation is made of parallel beams. 

For each wavelength l, the diffuse reflectance Rl(d) and transmittance Tl(d) can 

be computed by the Kubelka-Munk (K-M) theory equations. In the K-M theory, the 

propagation of radiation in a medium that absorbs, emits, and scatters is described in 

two-fluxes approach (Kortum, 1969). The theory has the following assumptions 
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(Olinger and Griffiths, 1988, Cheong et al., 1990): (i) the radiation propagates in the 

sample in a two flux which are opposite to each other; (ii) the illumination over the 

sample is monochromatic, (iii) the scattered radiation distribution is isotropic or is 

specular; (iv) the sample is made of particles that are randomly distributed in the 

different sample layers and that have a size much smaller than the layer thickness and 

the wavelength of the incident radiation; and (v) the surface of the sample is much 

greater than its thickness. 

According to this theory, when the thickness of a sample (d) increases, its 

reflectance increases, but its transmittance decreases. Thereby, for each wavelength 

l, Rl(d) and Tl(d) are expressed as a function of the sample thickness d, the scattering 

(Sl), and absorption (Kl) coefficients by the following equations (Kortum, 1969): 
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Equation 1.13 

where d is the sample thickness (mm), Tl(d) is the transmittance of the sample 

having a thickness d, Rl(d) is the reflectance of the sample having a thickness d, Kl is 

the absorption coefficient (mm-1), and Sl is the scattering coefficient (mm-1). Tl (d), 

R l (d), Kl, and Sl  depend on the wavelength (l). 

Because wood does not easily transmit radiations, only the diffuse reflectance 

can be used to easily derive the scattering (Sl), and absorption (Kl) coefficients. In order 

to estimate both Sl and Kl from Rl (d) using Equations (1.12 - 1.13), there is the need to 

have at least two reflectance measurements from a sample in two different thicknesses. 

It is important to understand that Sl and Kl of the K-M theory are only approximation of 

the true scattering coefficient (ɛs) and absorption coefficient (ɛk). True absorption and 

scattering coefficients represent the probability of absorption and scattering per unit path 

length (Shi and Anderson, 2009) and they are about half of Sl and Kl, 

respectively (Olinger and Griffiths, 1988, Hapke, 1993). However, Kl and Sl allow 

deriving other optical parameters of the scanned samples, such as the transport 
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absorption (ůla) and the reduced scattering coefficient (ůls(1-g)) (van Gemert and Star, 

1987, Sterenborg et al., 1989, Shi and Anderson, 2010, Roy et al., 2012) by: 
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Equation 1.15 

where ůla is transport absorption (mm-1), ůls(1-g) is reduced scattering 

coefficient (mm-1), g is the anisotropy factor (dimensionless) which is computed as the 

mean cosine scattering angle. It equals to zero in the case of isotropic scattering.  

Both ůla and ůls(1-g) allow defining another optical parameter, which is the 

penetration depth (ŭl) by (Sterenborg et al., 1989): 
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Equation 1.16 

ŭl is a good indicator of the radiation penetration in the sample, although that is 

not the effective penetration depth, which is the depth where the amount of radiation 

energy or intensity is reduced to 37% (Welch and van Gemert, 2011). Note that, 

Equations (1.14 - 1.16) are only valid when the scattering dominates the absorption. 
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While Tsuchikawa et al. (1996)ôs model is quite complex to use for estimating 

MC or BSG from hyperspectral images,  the K-M theory equations (Equations 1.12 and 

1.13) have been employed in this thesis to derive the scattering (Sl), and absorption (Kl) 

coefficients from hemispherical diffuse reflectance spectra recorded between 400 and 

2500 nm on thin wood samples extracted from log disks of a hardwood species (quaking 

aspen (Populus tremuloides Michx.)) and a softwood species (black spruce (Picea 

mariana Mill.)). T hese coefficients were then related to the sample MC using the partial 

least squares (PLS) regression method. 

1.4.6. Factors influencing the NIR spectra and resulting estimation 

1.4.6.1. Species 

Wood properties change from one species to another and these changes affect the 

reflected radiation and, in turn, quantitative or discriminant analysis. This is particularly 

important for the estimation of the density, which is a species-dependent property. 

Figure 1-5 shows the influence of the species on the mean MSC spectra collected by an 

NIR hyperspectral imaging system over the transversal section of thawed samples of 

quaking aspen, balsam poplar, and black spruce that have an MC between 8 and 12%. 

The mean BSG is 0.44 for quaking aspen, 0.43 for balsam poplar, and 0.46 for black 

spruce. There is a turning point in the spectra at 1130 nm. Black spruce absorbance is 

lower than the one of quaking aspen and balsam poplar for wavelengths below 1130 nm, 

but is higher for wavelengths above 1130 nm. The same pattern was also observed with 

frozen samples. Combining species in a single PLS model will therefore be beneficial. 

Schimleck et al. (2001) showed that the combination of Eucalyptus delegatensis and 



39 

 

Pinus radiata improved the estimation of density by NIR spectroscopy. Hans et al. 

(2015a) found that the best BSG estimation accuracy was obtained by combining 

quaking aspen (Populus tremuloides Michx.) and balsam poplar (Populus balsamifera 

L.) in a same model. 

 

Figure 1-5: Influence of the species on the MS-corrected spectra acquired over the 

transversal section of thawed samples. All the samples have an MC of 12% and have 

similar BSG (BSGaspen = 0.44, BSGpoplar = 0.43, BSGspruce = 0.46). 

 

1.4.6.2. Anisotropy 

The MC prediction accuracy using NIR spectroscopy was much better when 

measurements were performed on the transversal section than on other sections as 

shown on red oak (Quercus spp.) (Defo et al., 2007) as well as on quaking aspen, 

balsam poplar, and black spruce samples (Hans et al., 2013, Hans 2015, Hans et al., 

2015a). These results could be explained by the fact that the incident radiation over the 
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transversal section directly interacts with free water in lumens and therefore carries 

more information about water. Moreover, radiation can penetrate more deeply through 

the transversal section. On the two other sections (radial and tangential section), 

radiation interacts first with the cell walls and then with the lumen water (Tsuchikawa et 

al., 1996). 

Anisotropy also contributes to surface roughness differences, which affects the 

radiation reflectance. The transversal section contains the tracheid cross section, which 

generates more variations in the spectra than the radial and tangential sections 

(Figure 1-2). NIR spectra having lower absorbance in the radial and tangential section 

than in the transversal section were already reported from thawed Sitka spruce (Picea 

sitchensis) samples (Tsuchikawa et al., 1996) and green red oak lumber (Defo et al., 

2007). Both authors explained that the transversal section is rougher than the radial and 

tangential sections because of fiber orientation. When the sample surface becomes 

rough, the scattering from the surface becomes uneven and influences the reflectance 

measurements. Similar results were also reported from frozen and thawed black spruce 

samples (Hans et al., 2013). 

1.4.6.3. Hygroscopicity 

NIR spectra from hypersepctral camera cannot well distinguish bound water 

from free water in wood, by contrast to the magnetic resonance imaging technology 

(Lamason et al. 2014). However, free water and bond water have a different spectral 

influence on the NIR absorbance spectra. Above the fiber saturation (30% MC), the MC 

variations on the NIR absorbance spectra are mainly around 1460-1470 nm, because of 
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the absorption band of the free water. Below the fiber saturation (30%MC) where there 

is only bound water in the wood, drying the wood to 10% MC leads to a small shift in 

other wavelengths which are related to lignin (1410 and 1440 nm) and cellulose 

absorption bands (1490 and 1510 nm), because of the hydrogen bonding between water 

and cell wall compounds (Figure 1-6). 

 

Figure 1-6: Absorbance spectra as a function of MC for selected thawed balsam poplar 

samples. 

 

Wood density and MC are directly related to each other. Indeed, the density is 

the proportion of cell walls to voids, and water exists in cell walls and voids. In a 

specific species, when MC decreases, the density decreases because the wood weight 

declines, while the volume does not change. However, when MC is below the fiber 

saturation point, wood starts to shrink and its volume decreases. Consequently, the 
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density has to be defined in relation to a specific MC. An alternative is to employ BSG, 

which is independent of MC. 

For estimating BSG from NIR spectra acquired over wood samples subjected to 

different drying steps, a weak BSG estimation will be produced because of the influence 

of MC over the spectra. As a result, NIR absorbance spectra will change as a function of 

BSG differently for samples with a wide range of MC (Figure 1-7(a)) and for samples 

with low MC (less than 12%) (in Figure 1-7(b)). In Figure 1-7(a), a distinct pattern 

cannot be seen because of the MC influence. By contrast, in Figure 1-7(b), the entire 

spectrum shifts upward when BSG increases. The shift in the spectra is more apparent in 

the spectral domain around 1500 nm than in the other parts of the spectrum. This 

spectral region corresponds to the first OH-bond overtone that is linked to cellulose 

(Schwanninger et al., 2011). PLS models for predicting BSG will therefore be different 

according to the MC level of the samples, as shown by several studies on black spruce, 

quaking aspen, and balsam poplar samples in both thawed and frozen conditions (Hans 

et al., 2013, Hans, 2015, Hans et al., 2015a). 
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(a) 

 
(b) 

 

Figure 1-7: Absorbance spectra as a function of BSG for selected black spruce samples 

(a) covering the whole MC range (b) having low MC (<12%). 
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1.4.6.4. Frozen and thawed conditions 

NIR spectrum carries information about the overtones and combination of 

fundamental bands. Rising temperatures cause changes in molecular vibrations and 

consequently in the absorption spectrum (Swierenga et al., 2000). Most studies collected 

spectra at normal temperatures, but the effect of temperature on proposed models to 

estimate wood properties is needed for northern countries such as Canada, where large 

temperature variations are common. Decreasing temperatures produce shifts towards 

high wavelengths, such as the one Haddadi et al. (2015c) observed over black spruce 

samples (Figure 1-8). However, the shift around 1450 nm was lower than those reported 

for spectra acquired over sapwood and heartwood of black spruce (17.2 nm and 8.6 nm, 

respectively) (Hans et al., 2013) and of Norway spruce (Picea abies L.) H. Karst (25 nm 

and 5 nm, respectively) (Thygesen and Lundqvist, 2000a). MC and frost can also 

influence the amplitude of the shift (Thygesen and Lundqvist, 2000a). Figure 1-8 also 

shows a sharp peak (with high absorbance) at 1445 nm caused by the frost over the 

surface of the frozen samples. Hans et al. (2013) also observed such a sharp peak and 

explained it by the presence of ice that produces scattering. 
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Figure 1-8: Second derivative corrected spectra for a frozen and thawed black spruce 

sample (MC= 18.1%, BSG= 0.422) and detailed snapshots of the spectra showing the 

spectral shift due to changes in log states. The spectra have been acquired on transversal 

sections. 

 

1.5. VIS-NIR hyperspectral imaging 

1.5.1. Hyperspectral Imaging Systems 

As we already explained above, in order to reduce the waste, decrease the cost, 

and increase the productivity in the wood industry, wood properties should meet defined 

quality criteria. However, wood is highly variable, For example, the moisture content, 

the density, and other chemical properties can vary within annual rings because of the 

variable amount of latewood and earlywood. They can also vary between the sapwood 
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and heartwood regions. For example, the sapwood has usually a higher MC than the 

heartwood. Wood properties can also vary as a function of the height level in the trunk, 

because of different amounts of juvenile and mature wood (Panshin and De Zeeuw, 

1980, Barnett and Jeronimidis, 2003). All this variability has an influence of the 

efficiency in the process chain and may influence the end-product quality. For example, 

low quality lumber is often associated with wood having heterogeneous density. There 

is therefore the need in sawmills to develop sensors for measuring the variation of MC 

and BSG across raw materials and products. Only sensors such as  NIR hyperspectral 

imaging systems can provide 2D images of wood properties. In addition, these systems 

provide images with high spatial resolution (in the order of mm) and high spectral 

resolution (around 3 nm) that are suitable for accurate imaging of MC and BSG of wood 

samples. 

Hyperspectral imaging systems may be a little more expensive in terms of 

hardware and more complex to use than the simple NIR spectrometer, but they have the 

enormous advantages of directly providing 2D information on the wood sample, while 

NIR spectrometers only provide spot measurements. 

Hyperspectral images, also called hyper cubes (Figure 1-9), contain reflectance 

spectra for each point (around 1 mm) of the target surface over hundreds of wavelengths 

(Geladi et al., 2004, Salzer and Siesler, 2009, Li et al., 2013). The spectra have a narrow 

spectral (hyperspectral) sampling, e.g. less than 10 nm. Hyperspectral systems are better 

than multispectral broadband systems, because they capture more than 100 spectral 

bands continuously, without overlapping, and in a fine spectral resolution for each pixel, 
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while multispectral broadband systems capture limited spectral bands in a coarse 

spectral resolution (Chang, 2007, Li et al., 2013). The fine resolution of the 

hyperspectral data allows derivative analysis, which is useful to resolve overlapping 

absorption bands to better separate components of the global spectrum (Demetriades-

Shah et al., 1990). 

 

Figure 1-9: Hypercube data of a wood sample, and corresponding spectrum for a 

particular pixel. 
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There are four main techniques used to capture a hyperspectral image which 

differ according to the spectral recording method: point-scanning or whiskbroom 

imaging, pushbroom imaging, staring imaging, and snapshot imaging (Boldrini et al., 

2012, Li et al., 2013). 

In the point-scanning or whiskbroom imaging mode, the spectral information is 

captured through a rotating mirror. The mirror scans the sample from side to side of the 

conveyor, and the conveyor moves perpendicular to the direction of scan. Behind the 

mirror, there is a prism to disperse the reflected radiation from the sample and a single 

detector is used to record the spectra. By scanning the whole sample in both spatial 

dimensions, a hypercube image from the sample can be acquired. However, this system 

needs time to capture spectra for both dimensions since the recording process is repeated 

for each point. The short time period capturing for each point is also the reason that such 

systems are only able to acquire images at low spectral resolution and with a low signal 

to noise ratio (Boldrini et al., 2012, Li et al., 2013). Such system is useful for scanning 

small static objects. 

With the pushbroom or line scan camera, all spectra for one spatial dimension 

are simultaneously acquired by an array detector. In order to get a hypercube image, 

either the camera or the target should move in the direction perpendicular to the array 

detector. The spectral resolution of this system can be higher than the whiskbroom one. 

The most common method for spectral dispersion in this system is a prism-grating-

prism (PGP), which provides high spectral resolution (Boldrini et al., 2012, Li et al., 

2013). This system is very useful for in-line or on-line applications, because the line 
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scan camera can scan the entire samples, regardless of their length. This system also is 

the most popular in commercial NIR hyperspectral systems. In this thesis, we will use a 

pushbroom (line scan) camera (Specim), which can provide hypercubes. This system is a 

combination of an imaging spectrograph, a temperature stabilized camera, an 

illumination unit, and a translation unit (Figure 1-10). 

 

Figure 1-10: Main components of a line scan hyperspectral imaging system. 

 

The illumination unit should provide homogeneous incident radiation over the 

imaged spot of the camera. High intensity radiation can cause detector saturation in 

some wavelengths, and low intensity radiation leads to low signal to noise ratios. 

The staring imaging or frame type captures a single band/image in both spatial 

dimensions. In this system, different filters provide different wavelengths. A CCD 

matrix then records the 2D image in the predefined wavelengths. The number of 
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bands/images depends on the number of filters. The most common filters for this system 

are acoustic-optical-tunable filters (AOTF) or liquid crystal tunable filters (LCTF). 

Users can define the number of bands and modify the system by changing the filters. 

With this system, a high spatial resolution image can be acquired. However, the spectral 

resolution and SNR are lower than in the pushbroom imaging system, because the 

amount of the recorded radiation in each wavelength is low (Boldrini et al., 2012, Li et 

al., 2013). 

The last type of imaging system is the snapshot or single shot system. It can 

record both spatial and spectral information over a sample without scanning. The 

spectral dispersion element in this system is a prism, and a CCD matrix captures the 

hypercube data. This system is based on a two-dimensional transmission dispersive 

element, which is between two lenses. The first lens collimates the light coming from 

the sample then dispersive element diffracts the radiation and the second lens projects 

the diffracted radiation onto the CCD matrix. The spectral resolution in this system is 

lower than in the staring mode system, but the time for data collection is shorter than the 

other systems (Li et al., 2013). 

1.5.2. Image analysis methods 

The main steps to process hypercube data for extracting spectra from the images 

are: 1) image calibration, 2) recovering bad pixels that produce extreme reflectance 

values at some wavelengths, 3) removing abnormal spectra. 
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1.5.2.1. Image calibration 

The image calibration includes converting the digital numbers (DN) of the 

acquired images into true reflectance values by: 

╡  ╧ ║ Ⱦ ἥ ɀἌ 

Equation 1.17 

where R is the true reflectance vector of the sample, X is the raw DN vector of 

the sample, and B and W are the vectors representing the reflectance spectra of the black 

and white panels, respectively. 

As shown in Equation 1-17, the calibration of the images into reflectance images 

requires at least one image over a white reference panel and one image over a black 

reference panel, which their reflectance is known. Both reference panels should be large 

enough to cover the whole sample imaged by the camera and should have a highly 

homogeneous reflectance. The images of the white and black reference panels should be 

acquired each time before acquiring the sample images. The black panel image can be 

produced simply by covering the input lens with a black cap, while the white panel 

image is usually acquired over a Spectralon panel (Spectralon Co., 

www.labsphere.com). 

In several studies on wood property estimation using NIR-HSI data, this step is 

the only preprocessing step, and spectra were used directly in the modeling (Agresti et 

al., 2013, Fernandes et al., 2013b, 2013a, Kobori et al., 2013). 

http://www.labsphere.com/
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1.5.2.2. Bad pixels 

The NIR wood spectra can exhibit random reflectance maxima and minima at 

some wavelengths, called ñbad pixelsò as shown in Figure 1-11. They are due to the 

following causes: (i) the detector saturates, (ii) the detector does not measure any 

reflectance, (iii) the detector always measures the same reflectance value, and (iv) the 

detector measures only a proportion of the true reflectance (Grahn and Geladi, 2007). 

These extreme reflectance values can be replaced by the reflectance of neighbor 

wavelength channels (Burger, 2009). Since the position of the bad pixels is the same in 

all images, they can be found using the black and white panel images and their position 

can then be used to correct all the images acquired over the wood samples. 

After finding the wavelengths corresponding to extreme reflectance values, the 

corresponding reflectance values need to be estimated. This can be done simply by 

replacing the average of reflectance value of their neighborsô wavelengths, such as it is 

done with mean or median filters. 

In this thesis, we use a median filter because a median filter can work with non-

linear data and does not consider the statistical data distribution (Richards and Jia, 

2006). A median filter sorts the reflectance values within the bad pixel window in 

descending or ascending order, and the middle of the sorted data is selected as the filter 

output. The output excludes the values, which do not fit the pattern of the local 

neighborhood. 
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Figure 1-11: Raw spectra contains bad pixel, which can be recovered by a median filter 

 

1.5.2.3. Abnormal spectra  

Generally, images acquired with digital imaging sensor arrays have ñdeadò 

pixels, which produce abnormal spectra (Burger and Geladi, 2005). In Figure 1-12, all 

the spectra are associated with the same wood sample, but some of them are 

distinctively different than the majority of the spectra. These dead pixels correspond to 

the following cases: (1) the sensor is not measuring at the pixel location; (2) the sensor 

is producing an abnormal DN value at the pixel location; (3) there are bark, knots, and 

other defects in the imaged wood at the pixel location. 
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Figure 1-12: Reflectance spectra for a sample that also contain abnormal spectra. 

 

Several methods have been proposed to identify these abnormal spectra. In a 

study using hyperspectral images over loblolly pine wood disks, pixels of the bark and 

knot region were visually delineated and masked out (Mora et al., 2011b), but such a 

method can be tedious and inaccurate. Thumm et al. (2010) removed non-wood spectra 

from the dataset by a simple threshold reflectance between 1260 and 1460 nm. Such 

method may not be accurate or extended to other species. In this thesis, we used a 

combination of the principal component analysis (PCA) and the boxplot method of 

Laurikkala et al. (2000). First, the spectra are projected using PCA into a new space that 

has uncorrelated axis. PCA projection allows us to easily identify abnormal spectra 

since they are located outside the cloud, which corresponds to the ñgoodò spectra in the 

two-dimensional planes made by the first and second principal components. 
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The Mahalanobis distance between the cloud point median and the individual 

spectra can then be calculated by (Richards and Jia, 2006): 

Ὀ ╧ ╧╜ ɫ ╧ ╧╜  

Equation 1.18 

where D is the Mahalanobis distance of a spectrum from the cloud point median, 

X is the PC1 and PC2 vectors for an individual spectrum, XM is the median PC1 and PC2 

vectors for all spectra, and Ɇ is the covariance matrix of PC1 and PC2. By contrast to the 

Euclidean distance, the Mahalanobis distance allows us to consider the weight of the 

PCs: PC1 has a higher weight in the distance calculation than PC2.  

These distances are then used into the boxplot method of Laurikkala et al. (2000) 

as follows. The first (q1) and third (q3) quartiles of the distance distribution are 

computed as: 

ή πȢςυz ὔ ρ 

ή πȢχυz . ρ 

Equation 1.19 

where N is the number of spectra. These quartiles are then used to compute the 

maximum distance (MAX), which is the acceptable distance for an individual spectrum 

can present in order not to be considered as an abnormal spectrum, as: 
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-!8 ή ρȢυz ή ή  

Equation 1.20 

Every time, abnormal spectra are removed from the dataset, the median value of 

the cloud may change. Therefore, the boxplot method needs to be applied iteratively, 

which can be time consuming. In practice, since the median of the cloud changes very 

slightly, the number of iterations can be limited to two or three. Because each spectrum 

is associated with a particular pixel of the sample image, the position of the abnormal 

pixels in the image can also be found.  

1.5.3. Wood properties prediction  

Most of the studies using NIR spectra to predict wood properties are based on 

point-measurements. There are few studies that use hyperspectral images. Hyperspectral 

imaging systems have been tested to identify compression wood in Norway spruce 

(Picea abies L.) and in Scot pine (Pinus sylvestris L.) lumber (Nystrom and Hagman, 

1999). The wavelength range of the system was between 400 and 710 nm with a spectral 

resolution of 1.2 nm. The camera was set at 70 cm from the wood surface and provided 

images with a spatial resolution of 0.45×2.5 mm in cross-section and along the lumber. 

Hyperspectral imaging was also used for detecting compression wood in Norway spruce 

stem cross-sections (Duncker and Spiecker, 2009). The range of wavelengths used was 

between 400 nm and 1000 nm with a spectral resolution of 5 nm. The spatial resolution 

of the images was less than 0.1 mm. More recently, these systems have been used to 

map the chemical composition of wood (Thumm et al., 2010). These authors collected 

spectra over the range of 900-1700 nm with a 3.6 nm spectral resolution to provide the 
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distribution of lignin, galactose, and glucose. The camera was set at 49.5 cm above the 

sample surface and provided images with a spatial resolution of 1.05 mm. Mora et al. 

(2011b) used a hyperspectral imaging system working in the 1000-1700 nm range with a 

spectral resolution of 5 nm to map the MC and density of loblolly pine (Pinus Taeda L.) 

disks. In order to get the spatial resolution of less than 1 mm, the camera was set at 1.5 

m above the target. An imaging system that works in the 400-1000 nm spectral domain 

with a 3.7 nm spectral resolution was also employed to the map MC of European beech 

(Fagus sylvatica L.) and Scots pine (Pinus sylvestris L.) disk cross-sections (Kobori et 

al., 2013). The spatial resolution of the images was around 0.06×0.11 mm. 

Hyperspectral image in the range of 380-1028 nm with the spatial resolution of less than 

0.1 mm was also used to predict the density of Stone pine (Pinus pinea) disks. They 

employed X-ray images to calculate the density and built models to estimate density 

through two different algorithms, PLS and ANN (Artificial Neural Network) (Fernandes 

et al., 2013b, 2013a). Wood color changes caused by photo degradation have also been 

examined by VIS-NIR hyperspectral images acquired over poplar (Populus spp.) board 

samples (which had an MC of 12%) in two different wavelength ranges: 400-1000 nm 

and 1000-2500 nm (Agresti et al., 2013). 

The main difference between the modeling of wood properties in traditional NIR 

spectroscopy and in NIR hyperspectral imaging is that, in NIR spectroscopy, there is a 

reference value for each collected spectrum, whereas in NIR hyperspectral imaging, 

there is one image containing more than hundreds of spectra for each reference value. 

This issue makes hyperspectral image analyses more complex. One solution is to 

summarize the spectra of each image by considering the median or mean spectrum. An 



58 

 

alternative approach is to consider a region containing more than one spectrum for each 

image and repeating the reference value for all spectra in the region. In the estimation of 

MC for subalpine fir species, Haddadi et al. (2015a) considered both methods and found 

that the highest accuracy was obtained with the median spectra from each sample. Also 

the aforementioned studies of wood MC and BSG estimation using hyperspectral 

imaging systems did not consider the influence of species, anisotropy, log condition 

(frozen and thawed), and hygroscopicity in the modeling. In this thesis, the influence of 

some of these factors is examined. 

1.6. Thesis goal, objectives, and hypotheses 

The overall goal of this dissertation is to test and develop an NIR hyperspectral 

system that could be used as a fast non-destructive sensor for monitoring the spatial 

distribution of moisture content (MC) and basic specific gravity (BSG) of logs and 

boards. This system will help to characterize both wood properties and the distribution 

of wood properties. Such an optimization could lead to a decrease in energy 

consumption and manufacturing costs and to an improvement of the quality of the final 

products. Log sorting according to moisture content is important for the oriented strand 

board (OSB) industry for example because this property affects log shave size and glue 

bonding. It has been shown that the non-destructive estimation of wood MC in the OSB 

industry could save up to $300,000 annually (Knudson and Chen, 2001). 

Monitoring log BSG is important for the pulp and paper industry, to replace the 

high BSG black spruce by low BSG aspen. Because low BSG equals to poor strength 

properties (Barnett and Jeronimidis, 2003). Lumber MC is important to be monitored in 
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the kiln drying process because of a huge energy consumption, which can be reduced 

using advanced control systems (Léger and Amazouz, 2003). Wood MC is finally an 

important element in wood transportation cost. Besides having a direct influence, MC 

and BSG are also related to other wood properties, such as physical and mechanical 

properties, resistance to biological deterioration and non-stability in dimension (Panshin 

and De Zeeuw, 1980, Barnett and Jeronimidis, 2003, Bowyer et al., 2007, Isaksson et 

al., 2013). 

This thesis work is part of a research program to investigate several NDTE 

methods that perfectly meet the above mentioned requirements for characterizing wood 

moisture content and density. The other NDTE methods include near-infrared (NIR) 

spectroscopy, time-resolved NIR, GPR, and nuclear magnetic resonance (NMR) 

imaging were the subject of two other companion theses. However, except for the NMR 

imaging systems, these systems only provide spot measurements, which cannot reflect 

the spatial variability of the property in wood. Biological materials like wood are 

heterogeneous. Thus, only one measurement or even some measurements in different 

locations are not sufficient to show the distribution of wood properties across the 

product. Near infrared hyperspectral imaging (NIR-HSI) systems can provide such 

distribution of wood properties at a fine resolution by capturing thousands of spectra 

within a two-dimensional space in a short period of time (Geladi et al., 2004, Salzer and 

Siesler, 2009).  

This dissertation is limited to the investigation of NIR hyperspectral images to 

estimate MC and BSG of logs and lumber related to several tree species (black spruce, 
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quaking aspen, balsam poplar, and subalpine fir) that have a major economic importance 

for the Canadian forest products sector. The imaging system that will be tested here is a 

line scanning system, as line scanning systems allow acquiring images of samples of any 

size at a high spatial and spectral resolution. In order to be used in the plant, the 

acquired images should be processed as fast as possible. The images should also be able 

to measure MC and BSG over frozen material that can occur in Canada during winter. 

Most of the previous NIR spectroscopy used an empirical statistical approach and it is 

necessary to test a more deterministic approach using physics-based theories such as the 

Kubelka-Munk theory. 

Two major objectives were pursued:  

¶ To test the use of NIR-HSI images acquired over logs and lumbers to 

produce 2D images of MC and BSG through a combination of an image 

processing method and partial least squares model. 

¶ To determine wood MC using a more deterministic approach based on the 

Kubelka-Munk theory and to derive related wood optical parameters.  

1.6.1. Image processing method 

NIR hyperspectral imaging systems have been tested to identify compression 

wood (Nystrom and Hagman, 1999, Duncker and Spiecker, 2009) to map chemical 

composition of wood (Thumm et al., 2010), and to estimate MC and basic density of 

loblolly pine, European beech, Scots pine, and Stone pine (Mora et al., 2011b, 

Fernandes et al., 2013b, 2013a, Kobori et al., 2013). However, in all of these studies, the 
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image processing method involved several manual visual interpretations of the image, 

which can be tedious and produces inaccurate results.  

A first specific objective of this thesis is to develop a fast image processing 

method that allows retrieving clean spectra from NIR-HSI images acquired over logs 

and lumber.  

The following hypotheses were made: 

¶ Recovering bad pixels that produce extreme reflectance values at some 

wavelengths can be done using a median filter 

¶ Abnormal spectra can be removed using a combination of a principal component 

analysis (PCA) with the boxplot method of Laurikkala et al. (2000) 

¶ The image processing method should be fast and reliable regardless of the wood 

properties. 

1.6.2. MC and BSG 2D images 

As reviewed in Haddadi et al. (2015a, 2015b) and Leblon et al. (2013), the 

majority of the studies employing NIR spectra for estimating wood MC or BSG use 

point measurements that are not able to give a spatial distribution of the property across 

the sample. A few studies estimated MC or BSG images from NIR-HSI images using 

partial least squares models (Mora et al., 2011b, Fernandes et al., 2013b, Kobori et al., 

2013). However, all these studies were done over thawed wood and there is the need to 

test the models over frozen wood which occurs in Canada during winter. 
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A second objective is to develop partial least squares (PLS) regression models 

that allow producing 2D images of MC and BSG of the logs or boards. The models take 

into account the influence of the tree species for both the logs and the lumbers, and in 

the case of the log, of the log state (frozen/thawed). The species considered in the thesis 

were chosen for their economic importance in Canada: black spruce (Picea mariana 

Mill.), balsam poplar (Populus balsamifera L.), quaking aspen (Populus tremuloides 

Michx.), and subalpine fir (Abies lasiocarpa Hook.) 

The following hypotheses were made: 

¶ MC and BSG of boards and logs can be predicted non-destructively and in real-

time directly using an NIR-HSI system using partial least squares models. 

¶ Partial least squares models applied to NIR images acquired over subalpine fir 

boards can produce 2D images of MC and BSG 

¶ Partial least squares models applied to NIR images acquired over frozen and 

thawed logs from three different species and collected on can produce 2D images 

of MC and BSG independently of the species and the log state 

¶ Partial least squares models are effective to estimate MC images from NIR-HSI 

even if the MC values are large 

¶ BSG images are better estimated, if the MC of the sample is low 
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1.6.3. Wood MC and other optical wood properties using the Kubelka-Munk 

theory 

All the aforementioned studies that estimated MC or BSG from NIR spectra are 

based on partial least squares models that have an empirical nature, being a statistical 

multivariate analysis. An alternative would be to use a more deterministic approach that 

estimates wood optical parameters using a physics-based model. Only one optical model 

was developed so far, which explicitly describes the interaction between wood 

characteristics and NIR spectra using the Kubelka-Munk theory (Tsuchikawa et al., 

1996). Wood is modeled as an aggregate of semi-infinite inclined square tubes 

representing the tracheids with a membrane having a certain thickness. The model 

assumes that the incident radiation is made of parallel beams. The model was developed 

for Sitka spruce and there is the need to test the method over other species of economic 

importance in Canada, such as black spruce and quaking aspen. Also, Tsuchikawa et al. 

(1996)ôs model only estimates the absorption Kl and scattering S l coefficient spectra 

from NIR reflectance spectra and there is the need to estimate MC from the Kl or S l 

spectra. Also, the Kl and S l spectra allow computing other wood optical parameters, 

such as the transport absorption coefficient (ůla), the reduced scattering coefficient 

(ůls(1-g)), and the penetration depth (ŭl.). The effect of MC on these optical parameters 

is also analyzed. 

A third specific objective of this thesis is to derive MC from absorption Kl and 

scattering Sl coefficient spectra that were derived from NIR reflectance spectra using 

the Kubelka-Munk theory. A fourth specific objective of this thesis is to investigate the 
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effect of species and wavelength ranges over the MC estimation using the Kubelka-

Munk approach. Two species were considered here: a hardwood species (quaking aspen 

(Populus tremuloides Michx.)) and a softwood species (black spruce (Picea mariana 

Mill.)). A fifth specific objective of this thesis is to derive the transport absorption 

coefficient (ůla) spectra, the reduced scattering coefficient (ůls(1-g)) spectra, and the 

penetration depth (ŭl) spectra from the Kl and S l spectra and to investigate the effect of 

MC on these optical parameters. 

The following hypotheses were made: 

¶ The Kubelka-Munk theory equations applied to NIR reflectance spectra 

allow deriving the absorption Kl and scattering Sl coefficient spectra 

¶ The absorption Kl and scattering Sl coefficient spectra should be similar 

between the black spruce and Sitka spruce species, but very different for 

the quaking aspen species  

¶ MC is better related to the absorption Kl spectra than to the scattering Sl 

coefficient spectra 

¶ The transport absorption coefficient (ůla) spectra, the reduced scattering 

coefficient (ůls(1-g)) spectra, and the penetration depth (ŭl.) spectra can 

be derived from the absorption Kl and scattering Sl coefficient spectra 

¶ MC has an influence over the transport absorption coefficient (ůla) 

spectra, the reduced scattering coefficient (ůls(1-g)) spectra, and the 

penetration depth (ŭl.) spectra 
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1.7. Thesis organization 

This thesis is organized into six chapters. The introduction (Chapter 1) reviews 

the principles of the NDT methods used to assess wood product properties. Among all 

types of NDT methods, we primarily focused on the NIR hyperspectral imaging system. 

Chapters 2 to 5 present the four manuscripts on which the thesis is based. 

Chapter 2 is entitled ñUsing near infrared hyperspectral images on subalpine fir 

board - Part 1: Moisture content estimationò and was published in Wood Material 

Science & Engineering in 2015. This manuscript presents all the required preprocessing 

steps to achieve clean spectra from a hyperspectral imaging system. We also built a 

model to estimate MC of subalpine fir. 

Chapter 3 is entitled ñUsing near infrared hyperspectral images on subalpine fir 

board - Part 2: Density and basic specific gravity estimationò and was published in 

Wood Material Science & Engineering in 2015. This manuscript presents the calculation 

of density and basic specific gravity of dried wood samples. A model used to estimate 

density and basic specific gravity of subalpine fir species is presented. The effect of MC 

variation on the estimation of BSG is also discussed. 

Chapter 4 is entitled ñPrediction of wood properties for thawed and frozen logs 

of quaking aspen, balsam poplar, and black spruce from near-infrared hyperspectral 

imagesò and was published in Wood Science and Technology in 2015. This manuscript 

presents the influence of species and log state (thawed and frozen) on the spectra 

collected from quaking aspen (Populus tremuloides (Michx.)), balsam poplar (Populus 
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balsamifera (L.)), and black spruce (Picea mariana Mill.)). Models were developed to 

estimate MC and BSG of these species according to several factors. We also built a 

general model in which several factors were taken into account. PLS-DA was also 

employed to sort the logs in different classes of MC and BSG, as well as to discriminate 

species and log state (thawed and frozen). 

Chapter 5 is entitled ñOptical properties of wood and their relationship to 

moisture contentò and was published in Journal of Near Infrared Spectroscopy. This 

manuscript presents the calculation of wood optical properties of quaking aspen 

(Populus tremuloides Michx.)) and black spruce (Picea mariana Mill.)) based on the 

Kubelka-Munk theory. The MC and species effects on wood optical properties were 

discussed and models to estimate the sample MC from optical properties and raw or 

transformed spectra were provided.  

Chapter 6 is the conclusion of the thesis and provides recommendations for 

future research. Finally, an appendix that delivers the supplementary information is 

provided.  

For Chapters 2 through 5, the author designed the experimental procedure with 

the approval of his supervisors and advisory committee, designed the image processing 

method, performed the data analysis, wrote the first draft of each manuscript, and 

corrected each manuscript based on the inputs from the respective co-authors and 

referees.  


















































































































































































































































































































































































































