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Abstract

The purpose of this research was to investigage use of near infrared
hyperspectral imaging (NHRISI) for in-line moisture content (MC) and basic specific
gravity (BSG) estimation of thawed and frozen logs as well as of boards. We also
developed a method to classify the logs according to their MG, Bpecies, and log
state (frozen and thawed). Samples from three different species (black spruce, quaking
aspen, balsam poplar) for logs and one species (subalpine fir) for board were collected
and dried in different steps. We also considered frozenlsamgr logs. For each step

hyperspectral NIR images and weight measurements were acquired.

The images were subjected to the following processing. They were first
calibrated into reflectance. Then, bad pixels were found and replaced by a corrected
value ugng a median filter. A new method was developed to find and remove abnormal
spectra. It consisted of a combination of texplot method and principle component
analysis (PCA). The remaining spectra were converted into absorbance spectra. The raw
absorbane spectra were subjected to several spectral transformations, such as the

multiplicative scatter correction (MSC), as well as the first, and second derivatives.

For the board, the best PLS model was found in using raw spectra for both MC
and BSG estimatioand had an RMSEof 10.8% and 0.007, respectively. For the log
samples, PLS models were calibrated by considering two factors: log state (thawed and
frozen conditions) and species, and their combination. Then the models were applied to

the whole board inges in order to produce 2D images of MC and BSG.



Models were better with thawed logs than with frozen logs. The models
estimated MC with an RMSE that varies between 2.94% in the case of black spruce to
15.49% in the case of baayfa BSG esgiogtionavas.the T h e
best when all the three species were used together (RMSE6). PLS discriminant
analysis (PLSDA) was also applied to sort log samples into three MC or BSG classes,
species, or the log state (frozen and thawed). The dwm@lracy of PLDA models
were above 72% for both MC and BSG sorting and above 85% for the species and log

state sorting.

Finally, the Kubelkaviunk theory equations were employed to calculate several
wood optical properties from visibleearinfrared refectance spectra acquired over thin
samples of quaking aspen and black spruce. The properties included absorption and
scattering coefficients, transport absorption, reduced scattering, and penetration depth.
The sampleMC was then estimated using PLS resggien method from thabsorption and
scattering coefficient spectrAbsorption coefficient spectra between 800 and 1800 nm can
provide PLS models having an acceptable accuracy for MC estimatior(.83 and

RMSEcv=2.32%), regardless of the species.
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Chapter 1. Introduction

1.1. General context

The forest products industry plays an
Canada has 348 million hectares of forest land, which is equal to 38% of the total land
area of Canada and 9% of the worl dos tot al
as sustainable forests. Canada is the second largest exporter of forest products in the
world, after the USA. In 2013, Canada reached the first place in forest products trade
balance with a value of C$ 19.3 billion, which is approximately C$5 billion rtiae
the second place, Sweden. The same year, C
to the countryos GDP. Mor eover, t he for e
extensively to employment and creating jobs. More than 216,500 people were directly
involved in this industry in 2013. In 2013, the Canadian forest industry achieved a profit
of C$2.7 billion, which is 152% of 2012 and it was the highest obtained profit over the

past eight year@Naturd Resources Canada013.

Softwood lumber, structural panels, newsprint, and pulp and paper products are
the main wood products of the forest industry in Canada. In Canada 47% of the wood
products are softwood lumber and papsated materials. In thease of newsprint,
demand has dropped by 65% since 2000 due to electronic documents being preferred to
paper document s. Softwood | umber makes up
(Natural Resources Canada, 2019he market for lumber during the last few years
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slightly declined; however, it has restarted to increase because of the US market
recovery(Natural Resources Canadz015 and it has received more attention, due to

problems related to oil or other noenewable resources.

Mechanization of the wood products processing directly affects the final product
quality. It also decreases the cost of the production chain and enemtalrmpactdy
decreasing the waste and optimization in drying procébgse processes require
inexpensive, fast, and reliable techniques to estimate diverse wood properties. Non
destructive testing (NDT) systems have been applied extensively to adhisve
objective. They allow measuring wood properties without destruction of the samples
(Bucur, 2003bTrung and Leblon, 2031NDT systems also help mechanization process
in the wood industries by providing information that may not be provided by human

inspection, because they use other wavelengths than the human eyes.

1.2.Wood properties

Understanding of wood microstructure is important because it plays a major role
in the wood properties estimation. Indeed, the characterization of the wood
microstructure can help users to quantify the chemical, mechanical, and physical
properties of woodwood properties have a direct relationship with the quality of final
products. Thus, it is important to measure or estimate wood properties. For example,
with information on the wood properties, a sophisticated grading system could be
developed that wouldjuarantee that products meet standards for an optimum cost.

Estimation of wood properties would also help finding the right material to make the



right products.For example, structural lumber requires a high density and pulp and

paper products require logensity raw materials (Saranpaa 2003).

Depending on the scale, the sample properties can be considered homogeneous
or not. The scale starts from submicroscopic scale dealing with cellulosic crystals to
megascopic scale dealing with a group of tr@ascur, 2003 This thesis focused on
the scale b&teen microscopic and mesoscopic dealing with cells and annual rings (mm)

and tree sections (10 cm), respectively.

1.2.1.Chemistry

Water, organic, and mineral constituents form wood. A small amount of
extractives and inorganics can also be found in trees. Imirg ltree, water is the
dominant component, but in dry wood, the main elements in cell walls arelmasgdt

polymers or carbohydrates (@9%) such as cellulose, hemicellulose, and pectin.

A summary of wood chemical composition is presentedahle 1-1 for both
hardwood and softwoodpecies Softwood species contain generally more lignin than
hardwood species. However, it is thgposite for the amount of halellulose, cellulose,

extractive, and ash (Pereira et al., 2003, Bowyer et al., 2007, Rowell, 2013).

Tablel-1: Main wood components (in %) for hardwood and softwteteira et al.,
2003 Walker, 2006 Rowell, 2013.

Species Holocellulose Cellulose Lignin Extractive Ash
Hardwood 71.7+5.7 454+35 23.0+3.0 4+3 0.5+0.3
Softwood 645+46 437126 28.8+26 3+2 0.3+0.1




Holocellulose is the major chemical component in wood cell walls, which is the
combination of cellulose (4@5%) and hemicelluloses (£%%). These polymers
contain a substantial number of hydroxyl groups that can absorb or desorb water
(Pereira et al.2003,Rowell, 2013. Lignin exists mainly in the secondary cell wall and
the spaces between the cell wallshich are middle lamella. Lignin has a complex
structure compared to cellulose because there is no single repeating unit in its molecular
structure. It is composed of aromatic polymers of phengpane units. It contains 15
20% of methoxyl(Pereira et al., @3 Rowell, 2013. Extractives are the minor
constituents of the wood cell walls. Typically, they contain organic compounds such as
fatty acids, fatty alcohol, resin, terpenes, and waxes. The wasaitn color, smell, and
durability of wood are due to extractives. Generally, heartwood has more extractives

than sapwoodPereira et al., 200Bowyer et al., 200/Rowell, 2013.

In addition to all organic compounds in wood, there are some inorganic
compounds also called ashes. Their contribution to forming wood is less than 0.5%.
Ashes contain different elements; however, more than 80% of them consist of Ca, K,
and Mg. Ashes exisin the form of oxalates, carbonates, and sulfates, or part of a

carboxyl group.

1.2.2.Heterogeneity

Wood compared to other construction materials is created by nature, so there is
heterogeneity in the wood chemical and physical properties from the bottomn timpth
of a tree, and from the bark to the pith. Furthermore, wood is vulnerable to climate,

weathering, and humiditfPanshin and De Zeeuw, 198&pecies have a strong effect
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on chemical and physical wood properties as well as the structure and types of cells. In

this section, the main contributors to the wood heterogeneity are explained.

1.2.2.1. Cell wall

At the microscopic scale, wood is not homogeneous because of cell
characteristicsWood is a composite of different cells and each cell has two different
regions: the cell wall and lumen. The lumen is void and has no structure, but the cell
wall is structured in three main regions, which include: the middle lamella, the primary
wall, and the secondary wall. The main components of the primary and secondary walls
are pectin and lignin, respectively. The middle lamella is the space between two
adjacent cells, which is lignifie(Panshin and De Zeeuw, 198Walker, 2006 Rowell,

2013. The primary cell wall is characterized by the random orientation of the cellulose
micro-fibrils. The rest of the wall, which is the secondary cell wall, is composed of three

layers: S1, S2, and §Barnett and Jeronimidis, 200Rowell, 2013.

S1 is a thin layer and has a large mitibwil angle (5370°). The next layer, S2,
is the most important layer in the cell wall. The overall properties of wood are
determined by this layer. It has lower lignin content with lower rriitnal angles (5
30°). S3 is between S2 and lumen. It is thin, but has high fiilmbangles (>70°), and
low lignin content, which makes it suitable for water transpirat{Barnett and

Jeronimidis, 2003Rowell, 2013.



1.2.2.2. Hardwood vs. softwood

The main factor responsible for the wood heterogeneity is species. Wood species
are classified as hardwood (angiosperms) and softwood (gymnosperms). Most of
softwood spe@s have needlieaves and are evergreen, and hardwood species are
usually broadeaved and deciduous. According to the wood structure, the main
difference between hardwood and softwood is the existence of vessel elements in
hardwood, whereas softwoods labtlese cells and have a simpler structure. Hardwoods

also contain a greater degree of variability in cell tyjealker, 2006 Rowell, 2013.

Tracheids are the main cells in softwood species. Their contribution to the wood
volume is more than 90%. Typically, they ar® 2am long, 5660 um wide, and have a
thickness of 28 um (Bowyer et al., 200,/Tsuchikawa, 200)7 Tracheids are responsible
for water conductivity and the mechanical properties of softwood species. They are
connected together through circular board pits and they have a longitudinal overlap of
20-30% with their adjacent cells. The other type of cellssoftwood are axial
parenchyma, resin canal complexes, and (Bgsnett and Jeronimidis, 200Bowell,

2013.

Hardwood species have fibrous ebsmts, vessel elements, axial parenchyma
cells, and rays. Compared to softwood, the variation of each cell in terms of size and
pattern are greater for hardwood species. Vessel elements or pores exist only in
hardwood for water conduction. They have diffgrsizes, but are much shorter than
tracheids. Different patterns of pores appear in diffuse porous and ring porous species.

Fi bersdé function in hardwood is the same



shorter length and their thickness is dirgc#lated to wood density and strength, which
lead to as low density such as for cottonwood or as high density such as for bulletwood

(Rowell, 2013.

1.2.2.3. Stem, length, and wood age

Wood properties also change from the bark to the pith or from the bottom to the
top of atree. Juvenile wood is the region, where wood is formed at an early stage, which
is closer to the pith. From the bottom to the top of the tree, the percentage of juvenile
wood graduallyincreases(Walker, 2006 Bowyer etal., 2007 Rowell, 2013. Juvenile
wood has a high micribril angle in S2 layer; thus juvenile wood has a tendency to
have a high longitudinal shrinkagBowyer et al., 200;/Rowell, 2013. The percentage
of juvenile wood is linked to the qualityf wood because in juvenile wood, the cell
length is 2630% shorter than in mature wood and cell walls are thinner, as shown by
the tracheid dimensions for both juvenile and mature wood of Norway spPicsEsa (
abieg of Table 1-2 (Brandstrom, 2001 Short cells and thin cell walls are associated

with a lower density and a lower strength.

Table1-2: Tracheid dimensions for both juvenile and mature wood of Norway spruce
(Brandstrom, 20011

Tracheid dimension Juvenile wood Mature wood
Tracheid length (mm) 1.282.70 2.804.29
Cellwa l | t hi ¢ 0.804.60 2.107.53

Annual rings also generate wood properties variations and mainly trigger density

variations. They are built as a function of the temperature and water availability. In
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summer, when water is abundant, earlywood is built, but in the winter season, latewood
is formed, which is thicker and denser (Tabl8)1Each spring, the new ring forms, but
sometimes, false growth rings are built depending on the tempe(Bwnger et al.,

2007). The seasonal effect makes the transition from earlywood to latewood being
generally sharfor nontropical species. By contrast, this transition is gradual in tropical
species because there is no sharp differences between seasons. The size of cell walls in
growth rings is generally constant, but the lamella from earlywood to latewood
graduallydecrease, and sudden and distinct changes in lamella across the rings can be

seen(Rowell, 2013.

Table1-3: Tracheid wall thickness of Norway spruce latewood and earlywood
(Brandstrom, 2001

Earlywood (um) Latewood (um)
Radial 3.52 6.23
Tangential 2.9 4.69

Wood properties are also different in the heartwood and sapwood regions, which
have different functions. As trees grow up, some parts of the tree gradually beceme non
functional in conducting food and water. This region is the heartwood, which typically
has a darker color, close to pith, and is surrounded by sapwood. Sapwood is conducting
water with biochemicals, which are mainly starch and lipids. Heartwood also acts as
storage of some biochemicals such as the extractives. Most of the sapwood cells are
alive, but the only alive cells in heartwood are parenchyma that are used to store or to
produce extractive@Rowell, 2013. During the maturation process, the transformation

of sapwood to heartwood occurs. It has been shown that the formation of heartwood is
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independat of growth rate and tree sigBgowyer et al., 200)f The heartwood can often
be detected visually bygs dark color because of the presence of extractives and/or by
measuring chemical components such as, for example, pinosylvin content in Scots pine

(Bergstrom, 2008

1.2.2.4. Compression Wood and Knots

Variations in wood properties also occur because of wind and gravity, which
lead to compression in softwood or tension in hardwood. Compression or tension wood
has a density up to 40% greater than a normal wood and is not desirable. The cell
structures incompression or tension wood have just S1 and S2 layers with a higher
micro-fibril angle than the normal woo@WValker, 2006 Bowyer et al., 2001 It is
important to avoid compression wood in lumber products because it causes longitudinal

shrinkage and decreases the strength of the products.

Knots also increase the heterogeneity ood: They are an imperfection in wood
products, which appears as a circular dark shape. In softwood, the acceptable average
volume of knots is 0-2.0%. However, this small amount has a drastic impact on wood
properties and downgrades the quality of lumBearot density is more than 1000 kg/m
whichcanbe83 ti mes of the normal woodds densit
different. The amount of resin in knots increases by 80flker, 2006 Bowyer et al.,

2007).



1.2.3.Anisotropy

Wood is an anisotropic material. Indeed, each wood direction has different
properties, while other matals such as metal, plastic, and glass can be isotropic. In a
tree, three sections can therefore be defined: cross section or transversal, tangential, and
radial. In the transversal or cross section, the cell walls, the annual rings, heartwood, and
sapwoda zones are appearing. This surface is perpendicular to the fiber orientation. By
contrast, radial or tangential sections are characterized by surfaces parallel to the grain
orientation. The radial direction is from pith to bark and the tangential dineistimom

the bottom to the top of a tréBowyer et al., 200;/Rowell, 2013.

pith
Transversal surface

Radial surface

Tangential surface

Figurel-1: Cross section or transversal, tangential, and radial sections of a tree trunk.

These sections differ by both their physical properties, which include
morphology and surface roughness and their chemical properties, which include their
permeability and molecular compositiqgRRowell, 2013. The surface roughnessf
radial and tangential sectiomase similar, but are different than those of cross sections

because of cell onm#ation Wood anisotropy is also responsible for mechanical
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properties (Forest Productd_abaatory, 2010 and light absorption variamns. In
transversal sections, light can penetrate more deeply and absorbed more accordingly
because this section contains the tracheid cross sggtigimoto et al., 2008 In

Figure 1-2, the mean and standard deviations of 1000 absorption spectra between 950
and 1650 nm for a black spruce sample having a moisture content of 11.5% and a basic
specific gravity of 0.427 are sivn as a function of the sections. The spectra were
collected by a hyperspectral imaging system. This figure shows that the absorbance
spectrum of the radial and tangential sections has a lower level and variation than the
absorbance spectrum of the tramseé section. The same pattern was observed with

other species for instance quaking aspen and balsam poplar.
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Figurel-2: Mean and two standard deviations of absorbance speci)ftbre
transversal sean (B) the tangential section, af@) the radial section in the case of a
black spruce sample (MC= 11.5%, BSG= 0.427)

1.2.4.Hygroscopicity

Wood is a hygroscopic material, because it has an ability to absorb or desorb

water from the environment. Wood can exchange water with its environment until an
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equilibrium moisture content (EMC) is reached. There is alimear relationship
between EMC ath the relative humidity (RH) and temperature (T). This relationship is
represented by a function callsdrption isotherm functio(Bowyer et al., 200,/Forest
ProductsLaboratory, 2010. Wood EMC decreases when the temperature increases or
when the relative humidity decreases. First, the water inside the lumen, called free
water, is lost following by the cell wall water, called bduvater. Fiber saturation point
(FSP) is reached when there is no more free water in wood. For most species, FSP is
around 30%. Below this point, more energy is required to dry wood because adsorption
forces (hydrogen bonding) hold water molecules. Waadtssto shrink when bound
water is lost. Conversely, when cell walls absorb water, wood starts to swell. Shrinkage
and swelling can be defined for each direction of wood as well as according to the wood
volume. The longitudinal shrinkage is negligible,ie@thmakes wood a suitable material

for construction projects. The radial shrinkage is between 2% and 6%, while the
tangential shrinkage is 12 times greater than the radial shrinkage. Generally, the
shrinkage varies according to the sample size, wooditgerand the rate of drying

(Bowyer et al., 200,Forest Productsabaatory, 2010.

1.2.5.Moisture content

Water in wood has significant effects on all wood properties including its
physical and mechanical properties. Thus, interactions between wood and water
influence all steps of the production chain and the final product quality. For example,
moisture conten(MC) variations in wood cause vicissitude and unequal shrinkage. It

also increases the cost of transportation and decreases the amount of thermal energy by
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not allowing hydrocarbons to burfDenig et al., 2000Bowyer et al., 207, Forest
ProductsLabaatory, 2010. Thus, it is importanto estimate MC in all steps of the

production chain.

In the wood products industry, the amount of water is expressed as the

percentage of the ovadry weight by:

Equationl.1

whereMg (kg) is the mass of the moist (green) wood sampleMyadkg) is the
mass of the ovedry wood. The most accuratesliable method to measure MC is to
weight the wet sample and then dry it in an oven at 103 £ 2°C to remove all water. The
oven-dried sample is then +weighted. More information about this process can be
found inmethod Aof ASTM-D4442 07 (2009) However, this approach is destructive
and it takes time. Moreover, volatile constituents are removed during the drying process,
which causes small errors in MC calculatigBkaar, 1988 Some other spot
measurement td® such as electric moisture meters provide a quick estimation of MC,
but their accuracy is low for samples with MC above 25%. They mainly include

resistance (pin type) or dielectric (flat plate) me{&isaar, 1988

In some applications, the wood MC is defineddaasn the percentage of total
weight, which is the weight of green or wet wodgh(ation1.2). This definition is

suitable for the fuel and the pulp and paper industBesvyer et al., 2007
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Equationl.2

There are many factors contributing to MC variations. In a living tree, the water
weight can be equal or greater than the dry wood substance weight. Moreover, the water
distribution is not homogeneous in tree trunks. The green MC of sapwood is higher in
hadwood than in softwood speci@@anshin and De Zeeuw, 19&bwyer et al., 2007
Forest Productkabaratory, 201(9. When a tree is harvested, wood MC gradually starts
to decrease. During the drying process, regardleiseddpecies, the water moves from
a high concentration zone to a lower concentration by diffusion. Such diffusion
produces an increase in the MC variation in the sample. Impermeable regions also
generate MC variations. For most species, the sapwood ialelen so its drying rate
is higher than impermeable regions such as heartwood. Also, some species, such as fir
and aspen, contain wetood or wet pockets. These impermeable zones decrease the
drying rate and require careful attention during the dryinggss(Kroll et al., 1992

Cai, 2006 Bowyer et al., 200,ANVatanabe et al., 2012b

1.2.6.Density and Basic specific gravity

Density or specific gravity is one of the most important wood physical
properties. Many of wood mechanical properties, heat transmission, diffusion
coefficient, andoulp yield properties are directly related to the density. Other properties
such as the wabanatomy, shrinkage, and swelling are also a function of the density.

Wood with higher density has more cell walls and/or has a higher proportion of
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latewood. The density of cell walls is 1520 kd/walker, 2006 Bowyer et al., 200)

so in a piece of quaking aspen with a density of 399 kg#pproximately 74% of the
volume is vod or lumen. Knowledge of density is also required to estimate the modulus

of rupture (MOR)(Wang et al., 2000Yin et al., 2010 and the modulus of elasticity
(MOE) (Barnett and Jeronimidis, 200Blora et al., 2009from ultrasonic or acoustics
measurements. Density monitoring can also be used for early detection of wood decay.
Indeed, decayed wood is less dense than sound wood because cellulose and lignin in the
cell walls are consumed or modified by fungal activifi€slley et al., 2002 Stirling et

al., 2007. Wood density can help to detect compression wood, which is denser than the

normal woodDiaz-Vaz et al., 200P

Wood density can be represented using three variables. The first one is the
density 6ensu strictpat a specific MC (), which is the ratio between the mass and
the vdume of the sample at a given moisture confEotest Productsabaratory, 2010

Williamson and Wiemann, 20)0

W
Fve = e
VMC
Equationl.3

where:

T Jwcis the density of the sample at a given moisture content tkg/m
1 Wi is the mass of the sample at a given MC (kg)

f Vicis the volume of the sample at a given MC)m
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Usually, J uc is expressed either for airy, ovendry, or green conditions. The
ovendry wood density is mainly related to cellulose, hemicellulose, lignin, and the

proportion of void space in the wood.

Another variable to express the wood density is the basictd€B§&)), which is
defined as the ratio between the mass of an-ovgrsample to the volume of the same
sample when it is greefWalker, 2006 Williamson and Wiemann, 201@0Vatanabe et

al., 20123

Equationl.4
where:

1 Wob is theweight of the overdry sample (kg)

f Vcreenis the volume of the sample when it is greed)(m

According to Williamson and Wiemann (2010fhe wood volume does not
change above theber saturation point (FSPMCrsp around 30%)Vareencan thus be
considered to be equivalent to the saturation volume that is measured folMetmod

B of ASTM-D2395 07a (2009pfter completely soaking the sample in water.

The third variable is the basic specific graviBSQ, which is theratio between
the basic density (BD) and the water dengifprest Productd.abaratory, 2010

Williamson and Wiemann, 20)0
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BSG= E

water
Equationl.5
where:

f BD = basic density of the sample (kdjm
J water = Water density (kg/f) which isequal to1000 kg/ni or to 1 g/cm at 4°C
and under normal atmospheric pressure
BD or BSG is the most useful description of wood density, bedAtsdoes not
depend on the sample MC and because. is constant. BSG was shown to be related to
cell diameters, cell lengths, cell wall thickness, the proportion of the different cell types
within the tree, and the presence of extracti®ganshin and De Zeeuw, 198Rarnett

and Jeronimidis, 2003

It is impartant to know the wood densitaariability since it contains information
about strength variability. Wood density varies according to many factors such as
species, geographic location, site conditions, location in the trunk of a tree, and genetic
sourcesln many species, the basis of the tree tends to have a higher density than the
high part of the tree. Generally, in softwood, the density decreases with increasing tree
height and increases with increasing distance from the(Banett and Jeronimidis,
2003 Bowyer et al., 200 In fast growing species, the proportion of cell walls and
lumen changes and thus affects the density. In severe conditions, compression or tension
wood, which has higher density, may occyBarnett andJeronimidis, 2003Hein et

al., 2009.
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1.3. Non-destructive testing of wood properties

Non-destructive testing (NDT) is a science to identify physical, mechanical,
and/or chemical properties of materials without changing thekusadapplication and
retaining sample for further analygBucur, 2003a Most NDT techniques do not need
sample preparation or do not require dangerous chemicals. Moreover, they can be fast
and repeatable over a sample. The NDT techniques have been employed in the wood

product industry such as for sortingdagrading lumbe(Ross and Pellerin, 1994

NDT applied to wood are very different than those applied to homogeneous
isotropic material§Ross and Pellerin, 1984because of the heterogeneous nature of the
materi al . Wood property estimation wuncert

nature or degradation becauge¢he environmen(Bucur, 2003

In wood NDT applications, the radiation storage or attenuation due to the wood
properties is measured. Therefore, mathematical and/or statistical methods have to be
employed to relate the measured properties of wood to the recorded radiation. NDT
techniqus used for wood characterization are classified according to the properties
investigated or to the wavelength of irradiation used by the séBsour, 2003aHans,

2015. They can also be classified as nwnaging systems, which just provide one
measurement, or as imaging systems, which give spatial information about the
properties. In this thesis, we tested a hyperspectralimieared (NIR) imaging system

to produce 2D imageof MC and density and a visibMIR spot spectrometer to

measure optical properties of wood.
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In physics, radiation propagation is described in terms of waves or particles.
From the wave point of view, radiation is an oscillating electromagnetic (EM)ikh
a continuous range of energies or frequencies. An EM wave consists of two mutually
perpendicular electric and magnetic fields, which are perpendicular to the propagation
direction. From the particle point of view, radiation consists of packetseofgrcalled
photons(Stuart, 2004 The range of frequencies starts from radio wave$ Kiid) to

gamma ray (189 Hz).

The energy of each region of the EM spectrum is related to the wavelength or
frequency of the EM radiation and has been parametrized by the Maxsvellt heor y o
electre and magnetalynamics. The energy can be calculated by the following equation

(Stuart, 200%

Equationl.6

where c is the speed of light (3 x #an/s), a-is the wavelength (m) of the
electromagnetic radiatiofijs the frequency of the electromagnetic radiation (Hz),hand

is Planck’s constar{6.626x10 3 3.s or 4.135%0 ! eV.s).

The most common ranges of EM radiation used in NDT sensors that are
commercially available for industrial applications reays, visible, infrared, thermal
infrared, and microwave. The infrared range (0.Z000 um) is divided into several

parts: neainfrared (NIR) (700i 2500 nm), mid infrared (MIR) (3 30 um), and far
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infrared (FIR) (30" 1000 pum). In this thesis, the NIR wavelengths were used to estimate

MC, BSG, and optical properties of various wood samples.

1.3.1.X-ray

X-ray-based methodmeasure the attenuation coefficient of the corresponding
EM radiation. This parameter can be related to wood chemical and physical properties.
Indeed, Xray radiations penetrate through the wood anthy sensors measure the
corresponding attenuation cdefént that can be related to wood chemistry, moisture
content or densityBucur, 2003a)Bucur (2003a 2003b) and Wei et al. (2pteviewed
studies that useX-ray images acquired over wood samples to measure density
variations, MC variations for example in wood drying processes, for inspecting logs and
lumber defects, for determining stability of wooden building elements, in preservation
of wood monuments aniihe arts, for growth rate assessment, for pollution effects on

trees,andin dendrochronology sudies.

The first studiesof testing X-ray sensa over wood used systems that were
designed for medical or airport applications avatenot suitable for thevood industry
(Wei et al. 2011). More recently, commercialray systems were developed for the
wood industry Table 1-4). They are mainly multiple ew scanners. Only one is a true
computer tomography (CT) scanner. Images acquired with these scanners allow the 3D
reconstruction of the wood sample, suclit &sshownin Wei et al. (2009), because they

provide information on the wood sample from a npldtiview angle.
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Table1-4: Commercial Xray sensor appliet wood products

Conveyor
Wood - Type of X- Scanner name spee)tlj Company Website
product ray scanner :
(m/min)
Log Multiple Wood X N/A Bintec Oy  http://www.bintec.fi
views OPMES AX1 200 Inray Oy Ltd http://www.inray.fi
Logeye300 300 MiICROTEC http://microtec.eu
GmbH
RS-XRay 200" Rema http://www.remasawco.
Control AB e
Computer CT Log 180 MICROTEC http://microtec.eu
tomography GmbH
(CT)
Lumber  Multiple X-Scan 210 Luxscan http://www.luxscan.con
VIEWS Goldeneye 100 MICROTEC http://microtec.eu
300/500/600/900 GmbH

(*) pieces/min

All the devices listed inTable 1-4 are Xray systems that can measure wood
properties at a large scale (timber) (Bucur, 2003a, Wei et al., 2011). However, there is
one high resaition X-ray scanner that is eratided in the SilVScan system that was
designedto measure severalood properties at a micro scale (cell size) including
density, stiffness, mickdibril angle, and tracheid diameter (Evans, 1994, Shelbourne et
al., 1997, Evans and llic, 2001). For all theay systemsthere are some issuesusing

themoperationdly, because ofiealth and safety concerns and costs (Wei et al., 2011).

1.3.2.Visible and NIR spectroscopy

Visible light (453750 nm) and NIR (75@500 nm) sensors provide a wide range
of superficial information atut the wood sample. Conventional visible color cameras
are already used for grading and sorting, and for defect detéBtionner et al., 1990
classification of wood surface featur@utler et al., 2008 species identificatiofGigac

and Fiserova, 20)0and wood quaty assessment of the wood surface feat(iRez et
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al., 2005. However, visible cameras show limitations as the result depends on the
surface wetness as well as on sanggmg. Indeed, weathering, aging, and changes in

MC alter the wood surface col@Bigac and Fiserova, 2010

Also visible cameras have a limited used for measuring some wood chemical and
physical properties, as the main absorption bands of some major wood chemicals are
located in the neaiinfrared region. These bands are related to overtones and
combinations of molecular vibrations as describe8dhwanninger et al. (201and in
Leblon et al. (2013)Among all bonds, NIR spectra are more sensitive to hydrogen
bonding such as CH, NH, and OH. This fact makes NIR spectra suitable for determining
water content using quantitative or discriminant analysis. However, combinations of
fundamental overtorseare not very strong and in most cases, they are overlapped. These
issues make the NIR spectra very complex to analyze, but NIR tools have a great
potential as a versatile and attractive technique féine online, or offline process
monitoring becase they are fast and do not need sample preparation as much as other

systemgSo et al., 2004Burns ad Ciurczak, 200y

1.3.3.Thermal infrared (TIR)

Thermal infrared systems operate in the 3 to 12 um wavelength range and
measure the surface temperature image of the sample. They are two kinds of TIR
systems: active and passive sensors. Active sensors have their own heating source, while
passive sensorsse an external source of heating. The main disadvantage of active
thermal infrared thermal sensors is that they can induce damage in the sample and the

main disadvantage of passive sensors is the difficulty of capturing thermal images of
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wood when the teperature contrast is too low. Both systems also need a fast recording

system to capture the imag&ucur, 2003a

TIR systems were employed for the detection of singularities and defects in
wood (Lopez et al., 2014 Passive infrared techniques were used for datechvities
(Catena et al., 1990detection of knots and voids in lumber, because internal defects
change the thermodynamic behavior of the wood and surface tempéBaitcham et

al., 2012 Lopez et al., 2014

1.3.4.Microwave and radio frequency (RF)

Microwave techniques are based on the determination of the dielectric properties
of the material. Wood dielectric properties are directly related to its MC, density, and
fiber direction(Ramasamy and Moghtaderi, 2Q01Microwave signals can penetrate
through the wood and can providedapth information, which may not be seen with
other systems. However, such sensors are sensitive to vibrations which disturb the
polarization of the microwave sign@Bucur, 20033. Microwave systems have been
used for internal defects and grain direction as well as to assess structural discontinuities
of logs (Bucur, 20035 It also has been tested to estimate MC and BSG of different
wood speciegMoschler and Hanson, 2008lans, 20152015¢ 2015d Hans et al.,

20158 and knot detectio(Baradit et al., 2009

1.3.5.Acoustic

Ultrasonic techniques record ultrasonic waves reflected or transmitted from the
sample. As in the case ofrays, ultrasonic images can be acquired by translation of

23



detectors around the sample at different angles and by measuring the intensity of
reflecte or transmitted waves. However, unliKeray, ultrasonic rays do not travel in a
straight line in heterogeneous samples. Due to this reason, ultrasonicsagsieime an
accurate fast reconstruction algorithm to achieve useful signal from a samplee Thes
systems are capable of delivering high resolution images for small samples, standing
trees, and wooBlase composites. Ultrasonic techniques have been used extensively for
decay detection in both sample and standing trees as well as detection of Keots, de
and compression wooducur, 2003a They were also employed to estimate modulus

of rupture (MOR) and modulus of elasticity (MOE) of wood samples. However, wood
density at specific MC is required to find the relationship between acoust

measurements and wood mechanical propgitiesng et al., 200, Yin et al., 2010.

1.4.NIR spectroscopy

1.4.1.Principle

When an EM radiation interacts with a moleculguantum of energy is emitted
or absorbed. The energy of the quantum is equal to the energy between two adjacent
energy levels of the molecule. However, illuminating a sample with near infrared
radiations (752500 nm) induce vibrational and rotational rmments of its molecules.
For examplefor a water molecule (¥0), there are 3 translational, 2 rotational, and 3
vibrational degrees of freedom associated to fundamental vibrational frequencies

(Stuart, 2001
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In a normal mode, all atoms move in a phase with thesdeequency, but with
different amplitudes. In addition to the fundamental vibration mode, there are first,
second, and so on overtones and combinations of different vibrational transitions. The
NIR region have absorption bands that are related to overtand combination
vibrations. The intensity of overtone absorption bands is a function of the anharmonicity
constani(Stuart, 2004Burns and Ciurczak, 20p.7For example, Fbased stretching has
the largest anharmonicity constant and therefore higimsitieof overtone absorption

bands can be seen. As a result, it dominates the NIR r@@uons and Ciurczak, 2007

Reflectance is the most common method for capturing NIR spelrirthe
reflectance mode, diffuse and specular reflection happigure 1-3). Almost 1615%
of the reflected light is made of specular reflectance. This reflectance may not be really
useful because specular photons have not penetrated enough, and they do not carry
chemical information of the samp{8oldrini et al., 201 Diffuse reflectances (880%
of the reflected light) contain the signature of the absorption bands. For example, in the
NIR range, water OH bands exhibit five abgamp bands (760, 970, 1190, 1450, 1940
nm) (Burns and Ciurczak, 2007Schwanninger et al., 20L1which make NIR

spectroscopy a promising technique to determine and/or quantify moisture content.
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Figure1-3: Specular and diffuse reflection mode
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By defining the ratio of the reflected radiation fraime sample to the total

incident radiation the reflectand@/§ can be calculated by:

R/ =1/lo

Equationl.7

where | is the reflected light from the sample and the total incident radiation.

Theabsorbance4) is then given by:

Ar = Log(1R/)

Equationl.8

The amount of a substance can be quantified using the absorbance because
A/ has a relationship to its concentration (c), the molar absorptiore f f i ci ent (U

path length of the radiationl)((Danson et al., 199&tuart, 2004Burger, 2008
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Equationl.9

The interpretation of NIR spectra is challenging, because absorption bands can
be broad and occurrence @ierlapping betweethe absorption bands can occim.the
NIR region, there are only first and second overtones (and combination of them)
whatever the compound. The intensity for the overtones is quite weak, as it is about 0.01
and 0.001 of the fundamental absorption inten@tyart, 2004Workman and Weyer,
2012. In addtion, the NIR spectra are affected by the sample temperature. For example,
an increasing temperature will lead to a lower degree of hydrogen bonding in the
compounds that make the sample and the related absorption bands will shift toward
lower wavelengthgStuart, 2004 Burns and Ciurczak, 200%orkman and Weyer,
2012. Despite these complexities in analyzing NIR spectra, chemometric techniques
can be employed to extractseful information from the NIR spectr@urns and

Ciurczak, 200y.

1.4.2.Chemometrics

Chemometrics can be defined as the application of statistical methods to the
analysis of experimental data in chemistry. It can be used for qualitative, quantitative,
and discriminant analyses of NIR spedtBairns and Ciurczak, 2007For quantitative

analysis Equationl.9 can be simplified as:
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c=A*b

Equation1.10

whereb = (eg)™X. This equation can also be extended to:

Y=Xb+e

Equationl.11

where Y is the concentration or response variabfe,s the absorbance or
explanatory variableb is the coefficient which contains the information about the
concentration and path length of the radiation, amépresents the error. There are
several methods to fin of Equation1.11, such as ordinary least squares (OLS),
artificial neural network, principal component regression (PCR), and partial least
squares (PLS) regression. In this thesis, we employed PLS k&ddRcriminant
analysis (PLSDA) to quantify MC and BSG of wood and to discriminate wood species
as a function of these wood properties. We also used principal component analysis

(PCA) to find outliers and abnormal spectra in the image analysis steps.

PLSregression uses two matrices, predictor or explana¥oraiid responsey()
variables, to build a model. The PLS algorithm is mainly employed for quantitative
analysis, as the range ¥fis continuous. PLS can be applied to collinear and noisy data.
It is also useful, when the number of predictive variables is tremendous. Moreover, both
X and Y variables do not have to follow a specific distribution function. These
characteristics maké¢he PLS algorithm the best approach to analyze NIR spectra

(Martens and Naes, 198@/old et al., 200}
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In PLS, a new set of variables, callees&ores 1), is defined and is used for the
modeling of bothX andY. This variable is a good summaryXfand can be multiplied
by the loading matrixP, to form X. Compared to multiple linear regression (MLR) or
PCR, PLS finds the best part ¥fcorrelated toY. The rest ofX may contain noise
and/or variations ncerelated toY. This ability of PLS provides a better accuracy than

other methodgMartens and Naes, 198&0old et al., 200}

In PLS modeling, it is essential to determine the optimal number of latent
variables (LV). Using a high number or a low number of LV increases the risk of over
fitting or underfitting and decrease the predicting power of the m@@ewen et al.,
2011). The most reliable approach to define the optimum number of LV is the cross
validation (CV) method. In this approach, the data are divided into different groups. A
PLS model is calibrated using all groups with the exception of one. The latter group is
usal for prediction purposes and calculate the RMSE (root mean square differences
between actual and predict®&g of the cross validation. This process is repeated for
different number of LV. The optimal number of LV is associated to the first local
minimum RMSE (Wold et al., 2001 For example, irFigure 1-4, the root mean square
error of cross validation (RMS§ for different LV is pesented for a PLS model that

estimates subalpine fir moisture content. The optimal number of latent variables is 6.
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Figure1-4: Determination of the optimal number of PLS latent variables (LV) as a
function of the RMSECV. The optimal number of PLS latent variables is 6.

PLSDA is a special case of PLS in which tievariable is discrete or can be
presented in a discrete format @t each class is represented by a number (dummy
variable). This method is suitable for classification and qualification purposes as well as
for grouping samples with similar characteristi€zymanska et al., 201L.2As in PLS,

the optimal number of LV can be defined by using a evadislation method.

1.4.3.Spectrum transformation

Before using NIR sgctra for quantitative (PLS) or discriminant analysis (PLS
DA), unwanted effects have to be removed from the spectra because they are not related
to the response variabl&). For solid samples like wood, undesirable effects can be

caused by inhomogeneity in path lengths, radiation scattering, and random or
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instrumental noiséWold et al., 1998 Spectra preprocessing can help to improve the

robustness and accuracy bétmodels.

Many transformations for preprocessing spectra have been proposed for
example: multiplicative scatter correction (MS@aksson and Naes, 1988eigl et al.,
2007, extended multiplicative scatter correction (EMS®)artens and Stark, 1981
standard normal variate (SNVBarnes et al., 1989 and % and 2¢ derivative
transformationgDemetriadesShah et al., 1990 These techniques can reduce physical

interferences in NIR spectra, while maintaining the chemical information.

MSC assumes that the scattering coefficients are independent from the
wavelengths and can be sepadafrom the chemical informatiofBurger et al., 1997
Buddenbaum and Steffens, 201 his transformation removes both additive and
multiplicative correction effects by fittingach spectrum to an ideal spectrum that is the
average of all sample spectra through a least squares calculation. In SNV, spectra are
first centered and then scaled according to their mean and standard deviation,
respectively. It was showedhat SNV has dinear relationship to MSC and both
transformations provide a similar accuracy in quantification ana({@msnoaet al.,

1994. In 15tand 29 derivative spectra, it is assumed that the scattering will be removed

by subtracting t he refl ectance from neig
analysis of spectra has been proposed mainly in analytical chemistry to suppress
background signals artd resolve overlapping spectral absorption baimetriades

Shah et al., 199@anson et al., 1992With derivative analysis, the amount of noise in

the spectra also increases, which is the main disadvantage of this method. In all of these
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transformations, a constant scattering coefficiet @ll wavelengths has been expected
(Burger et al., 1997 It was also shown that these transformations may remove a small

portion of chemical information from NIR spec{iartens et al., 2003

1.4.4.Wood properties prediction

NIR spectroscopy has been used in food and agricultural industry since the
1 9 5 QMorkman and Weyer, 200.7This techniqudas been quickly extended to other
products, such as forest products. Compared to the traditional method such-dsyoven

method, spectroscopy has the following advantégeker and Siesler, 2009

- Itis quick and reliable

- It does not need sample preparation

- It extracts more information from single recorded spectra
- Itis a nondestructive technique

- It can be used by unskilled personnel

The most useful wavelength NIR range for quantitative asctridiinant analysis
is 9062500 nm, because below 900 nm the absorption bands are weak. NIR
spectroscopy has been developed for-destructive measurements of wood physical
properties, including estimation of moisture content and basic specific gravity
(Thygesen, 1994Thygesen and Lundqvist, 20Qbefo et al., 200,/Mora et al., 2008
Russ et al., 200 ooper et al., 201Mora et al., 2011,aXu et al., 2011Inagaki et al.,
2012 Abasolo et al., 2013Hans et al., 201,3Haddadi et al., 20152015k 2015¢ Hans

et al., 2015y stiffness and streng{frujimoto et al., 200)7 modulus of elasticity (MOE)
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and modulus of rupture (MORYGindl et al., 2001 Fujimoto et al., 2008Xu et al.,
2011), fiber length(Inagaki et al., 2012 shrinkage(Hein, 2012, microfibril angle
(Meder et al., 201,(Hein, 2012, compression streng{koffmeyer and Pedersen, 1995
species identificatior(Tsuchikawa et al., 2003Adedipe et al., 20Q8Haartveit and
Fleete, 2008Russ et al., 200 ooper et al., 201 Hans et al., 2015aheartwood and
sapwood segregatigiBergstrom, 2003Hans et al., 2015ajuvenile and mature wood
classification(Lestander et al., 200&s well as estimation of chemical proper(ige et
al., 2004 Alves et al., 2006Poke and Raymond, 2006andberg and Sterley, 2009

Meder et al., 201Mownes et al., 201Bheng et al., 20)1

In NIR spectroscopy studies for wood MC or BSG estimation, different factors
which generate variations of these properties have been taken into account in the
modeling approach such as tempera{ifeygesen and Lundqvist, 20Q0Hans et al.,

2013 20153, wood type (heartwood or sapwod@arttunen et al., 20Q081ans et al.,
20153, wood anisotropy(Schimleck et al., 2009efo et al., 200,/Fujimoto et al.,
2008, and wavelength range effe@dedipe and DawseAndoh, 2008. In the BSG
modeling, the effect of MC has also been considered because it inflibacgsectra

(Via et al., 2003Hans et al., 201,3Haddadi et al., 2015¢lans et al., 2015a

Most of the aforementioned NIR spectroscopy studies used single spot
measurement systems. The spectra obtained from these single spot measurements are
then rehted to bulk MC or BSG. This approach does not represent well the spatial

variability of the wood properties in the sample because biological materials like wood
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are heterogeneous. However, it is important to monitor such variability in several wood

manufaturing processe®©lson and Arganbright, 197Panshin and De Zeeuw, 1980

By contrast, imaging systems can provide spatial information about the entire
surface of the sample, which make them useful sensors-fmeabr orline process
monitoring (Lindstrom et al.,, 2014 Combining imaging systems with NIR
spectroscopy allows benefiting from both technologies at the same time. It will provide
a distribution map of the wood properties of a samwlachwould allow better process
optimization along the production chain. More explanation about NIR imaging systems

will be provided in Section 1.5.

1.4.5.Kubelka-Munk theory and optical properties

All the aforementioned studies used statistical analysis to relate tbd wo
properties to the NIR measurements. An alternative would be to use a more
deterministic approach based on physical princigisachikawa et al. (199@&)eveloped
an optical model, which explicitly escribes the physical interactions between wood
properties and NIR spectra. Wood is modeled as an aggregate ahfeit@ inclined
square tubes representing the tracheids with a membrane having a certain thickness. The

model also assumes that the incideadiation is made of parallel beams.

For each wavelength, the diffuse reflectanc® (d) andtransmittancd’,(d) can
be computed by the Kubeldunk (K-M) theory equations. In the-KI theory, the
propagation of radiation in a medium that absodrsits, and scatters is described in

two-fluxes approach (Kortum, 1969. The theory has the following assumptions
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(Olinger and Griffiths, 1988Cheong et al., 1990 (i) the radiation propagates in the
sample in a two flux which are opposiie each other; (ii) the illumination over the
sample is monochromatic, (iii) the scattered radiation distribution is isotropic or is
specular; (iv) the sample is made of particles that are randomly distributed in the
different sample layers and that haveize much smaller than the layer thickness and
the wavelength of the incident radiation; and (v) the surface of the sample is much

greater than its thickness.

According to this theory, when the thickness of a samg)eincreases, its
reflectance increase but its transmittance decreases. Thereby, for each wavelength
| R/(d) andT/(d) are expressed as a function of the sample thickshetbe scattering

(S) and absorption (K coefficients by the following equatioiiKortum, 1969:

b
T,(d)=—
a sinhX + 6 coshX
sinhX
R (d)

" asinhX + b coshX

Equationl.12

where
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X =bS,d

a:&.pl

b=+a?-1

Equationl1.13

whered is the sample thickness (mm),(d) is the transmittance of the sample
having a thickness &/ (d) is the reflectance of the sample having a thicknes& o,
the absorption coefficient (mi), andS is the scattering coefficient (mth T/ (d),

R (d), K/, andS depend on the wavelength)(

Because wood does not easily transmit radiations, only the diffuse reflectance
can be used to easily derive gmttering (5, and absorption (K coefficients. In order
to estimate bothiSand K from R/ (d) using Equations (1.12 1.13), there is the need to
have at least two reflectance measurements from a sample in two different thicknesses.
It is important to understand that &d K of the K-M theory are only approximation of
the true scat t)eandabsgptioe®eff ff ii e iTreematbsordtien and
scattering coefficients represent the probability of absorption and scattering per unit path
length (Shi and Anderson, 20p9and they are about half of; Sand Ki,
respectively(Olinger and Griffiths, 1988Hapke, 1993 However, Kand $ allow

deriving other optical parameters of the scanned samples, such as the transport
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absorption {i ) and the reduceskcattering coefficientd(s(1-g)) (van Gemert and Star,

1987, Sterenborg et al., 1988hi and Anderson, 201Roy et al., 201pby:

K - 2S/a
: _1+sla/(2[5/a+5/s(1' g)])

Equationl.14
3
Zs/s(l_ g)
S =
/ 1+195/a/(3d:5/a+5/s(1_ g)])
Equationl.15

where Ga is transport absorption (m#h UG (1-g) is reduced scattering
coefficient (mm?), g is the anisotropy factor (dimensionless) which is computed as the

mean cosine scattering angle. It equals to zero in the case of isotropic scattering.

Bot ha midg1-g) allow defining another optical parameterhich is the

penetr at i)by{Stederbpry dt al.( 1889
d/ :(39/a[5/a+s/s(l' g)])05

Equationl.16

U/ is a good indicator of the radiation penetration in the sample, although that is
not the effective penetration depth, which is the depth where the amount of radiation
energy or intensity is reduced to 370®/elch and van Gemert, 2011Note that,

Equations (1.14 1.16) are only valid when the scattering dominates the absorption.
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While Tsuchkawa et al. (1996) s mo d e | i's quite compl ex

MC or BSG from hyperspectral images, thdé/Ktheory equations (Equations 1.12 and
1.13) have been employed in this thesis to derive the scatterin@u8 absorption (K
coefficientsfrom hemispherical diffuse reflectance spectra recorded between 400 and
2500 nm on thin wood samples extracted from log disks of a hardwood species (quaking
aspen Populus tremuloidesMichx.)) and a softwood species (black spruéecéa
marianaMill.)). T hese coefficients were then related to the sample MC using the partial

least squares (PLS) regression method.

1.4.6.Factors influencing the NIR spectra and resulting estimation

1.4.6.1. Species

Wood properties change from one species to another and these changdseaffect t
reflected radiation and, in turn, quantitative or discriminant analysis. This is particularly
important for the estimation of the density, which is a speategendent property.
Figure1-5 shows the influence of the species on the mean MSC spectra collected by an
NIR hyperspectral imaging system over the transversal section of thawed samples of
guaking aspen, balsam poplar, didck spruce that have an MC between 8 and 12%.
The mean BSG is 0.44 for quaking aspen, 0.43 for balsam poplar, and 0.46 for black
spruce. There is a turning point in the spectra at 1130 nm. Black spruce absorbance is
lower than the one of quaking asperdvalsam poplar for wavelengths below 1130 nm,
but is higher for wavelengths above 1130 nm. The same pattern was also observed with
frozen samples. Combining species in a single PLS model will therefore be beneficial.

Schimleck et al. (20013howed that the combination &ucalyptus delegatensand
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Pinus radiataimproved the estimation of density by NIR spectroscdigns et al.
(2015a) found that the best BSG estimation accuracy was obtained by combining
quaking aspenRopulus tremuloides Michxand balsam poplaiPppulus balsamifera

L.) in a ame model.
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Figure1-5: Influence of the species on the M8rrected spectra acquired over the
transversal section of thawed samples. All the samples have an MC of 12% and have
Similar BSG (BSGspen: 044, BS@opIar: 043, Bsggruce: 046)

1.4.6.2. Anisotropy

The MC prediction accuracy using NIR spectroscopy was much better when
measurements were performed on the transversal section than on other sections as
shown on red oakQuercus spp (Defo et al., 200y as well as on quaking aspen,
balsam poplar, and black spruce samiléans et al., 201,3Hans 2015Hans et al.,

20153. These results could be explained by the fact that the incident radiation over the
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transversal section directly interacts with free water in lumens and therefore carries
more information about water. Moreaoye@adiation can penetrate more deeply through
the transversal section. On the two other sections (radial and tangential section),
radiation interacts first with the cell walls and then with the lumen waserchikawaet

al., 1996.

Anisotropy also contributes to surface roughness differenceish affects the
radiation reflectance. The transversal section contains the tracheid cross, sdutbn
generates more variations in the spectra than the radial and ttahgeettions
(Figure 1-2). NIR spectra having lower absorbance in the radial and tangential section
than in the transversal section were already reported from thawed Sitka Spingze (
sitchensiy samples(Tsuchikawa et al., 199Gnd green red oak lumbéDefo et al.,

2007). Both authors explained that the transversal section is rougher than the radial and
tangential sectionsdzause of fiber orientation. When the sample surface becomes

rough, the scattering from the surface becomes uneven and influences the reflectance
measurements. Similar results were also reported from frozen and thawed black spruce

samplegHans et al., 2013

1.4.6.3. Hygroscopicity

NIR spectra from hypersepctral camera cannot well distinguish bound water
from free water in wood, by contrast to the magnetic resonance imaging technology
(Lamason et al. 2014). Howevereér water and bond water have a different spectral
influenceon the NIR absorbance spectbove the fiber saturation (30% MC), the MC

variations orthe NIR absorbance spectiee mainly around 1460470 nm,because of
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the absastion band of the fresvater. Below the fiber saturation (30%MC) where there
is only baund water in the wood, dryinthe wood to 10% MC leads to a small shift in

other wavelengths whiclare related to lignin (1410 and 1440 nm) and cellulose
absorption bands (1490 and 1510 nbe@cause of the hydrogen bonding between water

and cell wall compounds$-(gure 1-6).
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Figure1-6: Absorbance spectra as a function of MC for selected thawed balsam poplar
samples.

Wood density and MC are directly related to each other. Indbedensity is
the proportion of cell walls to voids, and water exists in cell walls and voids. In a
specific species, when MC decreases, the density decreases because the wood weight
declines, while the volume does not change. However, whenisM@low the fiber

saturation point, wood starts to shrink and its volume decreases. Consequently, the
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density has to bdefined in relation to a specific MC. An alternative is to employ BSG

whichis independent of MC.

For estimatingBSG from NIR spectra acquired over wood samples subjected to
different drying steps, a weak BS&Stimationwill be produced because of thdlirence
of MC over the spectra. As a result, NIR absorbance spectra will change as a function of
BSG differently forsamples with avide range of MC Figure 1-7(a)) and for samples
with low MC (less than 12%) (ifrigure 1-7(b)). In Figure 1-7(a), a distinct pattern
cannot be seen because of the MC influence. By contrabtgime 1-7(b), the entire
spectrum shifts upwandhen BSG increase$he shift in the spectra is more apparent in
the spectral domain around 1500 nm than in the other parts of the spectrum. This
spectra region corresponds to the firQH-bond overtone that is linked to cellulose
(Schwanninger et al., 20L1PLS models for predicting BSG wilherefore balifferent
according to the MC level of the samples, asashby severalstudieson black spruce,
quaking aspen, and balsam poplar samples in both thawed and frozen cofideioss

et al., 2013Hans, 2015Hans et al., 2019a
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Figurel-7: Absorbance spectra as a function of BSG for selected black spruce samples
(a) covering the whole MC rangle) havinglow MC (<12%).
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1.4.6.4. Frozen and thawed conditions

NIR spectrum carries information about the overtones emmbination of
fundamental bands. Rising temperatures cause changes in molecular vibrations and
consequentlyn the absorption spectru(@wierenga et al., 2000Most studies collected
spectra at normal temperatures, but the effect of temperature on proposed models to
estimate wood properties is needed for northern countries such as Canada, where large
temperature variations are common. Decreasing tempergitodace shifts towards
high wavelengths, such as the ddaddadi et al. (2015a)bserved over black spruce
samples Figure1-8). However, the shift around 1450 nm was lower than those reported
for spectra acquired over sapwood and heartwood of black spruce (17.2 nm and 8.6 nm,
respectively(Hans et al., 200)3and of Norway spruceP{cea abied..) H. Karst (25 nm
and 5 nm, respectivelyjThygesen and Lundqvist, 2000aMC and frost can also
influence the amplitudefdhe shift(Thygesen and Lundqvist, 20Q0&igure 1-8 also
shows a sharp peak (with high absorbance) at 1445 nm caused by the frost over the
surface of the frozen samplddans et al. (20133lso observed such a sharp peak and

explained it by the igsence of ice that produces scattering.
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Figure1-8: Second derivative corrected spectra for a frozen and thawed black spruce
sample (MC= 18.1%, BSG= 0.422) and detailed snapshots of the spectra shewing th
spectral shift due to changes in log states. The spectra have been acquired on transversal
sections.

1.5.VIS-NIR hyperspectral imaging

1.5.1.Hyperspectral Imaging Systems

As we already explainedbove in order to reduce the waste, decrease the cost,
and increaséhe productivityin the wood industrywood properties should meet defined
guality criteria. However, wood is highly variable, For example, the moisture content,
the density, and other chemical properties can vary within annual rings because of the

variade amount of latewood and earlywood. They can also vary bettheeapwood
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and heartwood regien For example, the sapwood hasually a higher MC than the
heartwood. Wood properties can also vary as a function of the height level in the trunk,
because oflifferent amounts of juvenile and mature wodthiishin and De Zeeuw,
198Q Barnett and Jeronimidis, 2003). All this variability has an influence of the
efficiency in the process chain and may influerfeedéndproduct quality. For example,

low quality lumber is often associatedth wood having heterogeneous densitpere

is thereforethe needn sawmillsto develop sensors for measuring the variation of MC
and BSG across raw materials and produdtdy sensors such aslIR hyperspectral
imagingsystemscan provide 2D images @food propertiesin addition, these systems
provide images with high spatial resolution (in the order of mm) and high spectral
resolution (around 3 nm) that are suitable fwrate imaging of MC and BSG of wood

samples.

Hyperspectral imaging systems may be a little more expensive in terms of
hardware andnorecomplex to use than the simple NIR spectrometer, but they have the
enormous advantages of directly providing 2D infation on the wood sample, while

NIR spectrometers only provig@otmeasurements.

Hyperspectral images, also called hyper culbégu¢e 1-9), contain reflectance
spectra for each point (around 1 mm) of the target surface over hundreds of wavelengths
(Geladi et al., 20045alzer and Siesler, 2009 et al., 2013. The spectra have a narrow
spectral (hyperspectissampling, e.g. less than 10 nm. Hyperspectral systems are better
than multispectral broadband systems, because they capture more than 100 spectral

bands continuously, without overlapping, and in a fine spectral resolution for each pixel,
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while multispetral broadband systems capture limited spectral bands in a coarse
spectral resolution(Chang, 2007 Li et al.,, 2013. The fine resolution of the
hyperspectral data allows derivative analysis, which is useful to resolve overlapping
absorption bands to better separate components of the global spdoeoratriades

Shah et al., 1990
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Figure1-9: Hypercube data of a wood sample, and corresponding spectrum for a
particular pixel.
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There are four main techniques used to capture a hyperspectral image which
differ according to the spectral recording method: psaanning or whiskbroom
imaging, pushbroom imaging, staring imaging, and snapshot im&Boidrini et al.,

2012 Li et al., 2013.

In the pointscanning or whiskbroom iaging mode, the spectral information is
captured through a rotating mirror. The mirror scans the sample from side to side of the
conveyor, and the conveyor moves perpendicular to the direction of scan. Behind the
mirror, there is a prism to disperse th#agted radiation from the sample and a single
detector is used to record the spectra. By scanning the whole sample in both spatial
dimensions, a hypercube image from the sample can be acquired. However, this system
needs time to capture spectra for bathehsions since the recording process is repeated
for each point. The short time period capturing for each point is also the reason that such
systems are only able to acquire images at low spectral resolution and with a low signal
to noise ratigBoldrini etal., 2012 Li et al., 2013. Such systens useful for scanning

small static objects.

With the pushbroom or line scan camera, all spectra for one spatial dimension
are simultaneously acquired by an array detector. In order to get a hypercube image,
either the camera or the target should movéhéndirection perpendicular to the array
detector. The spectral resolution of this system can be higher than the whiskbroom one.
The most common method for spectral dispersion in this system is a-gratng
prism (PGP), which provides high spectral rasoh (Boldrini et al., 2012Li et al.,

2013. This system is very useful for-lme or onrline applications, because the line
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scan camera can scan the entire samples, regardless of their length. This system also is
the most popular in commercial NIR hyperspectral systems. In this thesis, wsevdl
pushbroom (line scan) camef@pgecin, which can provide hypercubes. This system is a
combination of an imaging spectrograph, a temperature stabilized camera, an

illumination unit, and a translation unit (Figurel@).

<€— Camera

<€— Spectrograph

Illumination
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A A

Translation Stage
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|

Figure1-10: Main components of a line scan hyperspectral imaging system

The illumination unit should provide homogeneous incident radiation over the
imaged spot of the camera. High intensity radiation can cause detector saturation i

some wavelengths, and low intensity radiation leads to low signal to noise ratios.

The staring imaging or frame type captures a single band/image in both spatial
dimensions. In this system, different filters provide different wavelengths. A CCD

matrix then records the 2D image in the predefined wavelengths. The number of
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bands/images depends on the number of filters. The most common filters for this system
are acoustiopticattunable filters (AOTF) or liquid crystal tunable filters (LCTF).
Users can defie the number of bands and modify the system by changing the filters.
With this system, a high spatial resolution image can be acquired. However, the spectral
resolution and SNR are lower than in the pushbroom imaging system, because the
amount of the regded radiation in each wavelength is |@Boldrini et al., 2012Li et

al., 2013.

The last type of imaging system is the snapshot or single shot system. It can
record both spatial and spectral information over a sample without scanning. The
spectral dispersion element in this system iam, and a CCD matrix captures the
hypercube data. This system is based on adwensional transmission dispersive
element which is between two lenses. The first lens collimates the light coming from
the sample then dispersive element diffracts #tkation and the second lens projects
the diffracted radiation onto the CCD matrix. The spectral resolution in this system is
lower than in the staring mode system, but the time for data collection is shorter than the

other systeméLi et al., 2013.

1.5.2.Image analysis methods

The main steps to process hypercube data for extracting spectra from the images
are: 1) image calibration, 2) recovering bad pixels that produce extefteetance

values at some wavelengths, 3) removing abnormal spectra
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1.5.2.1. Image calibration

The image calibration includes converting the digital numbers (DN) of the

acquired images into true reflectance values by:
1 = [ 7hzA

Equationl.17

whereR is the true reflectance vector of the samples the raw DN vector of
the sample, anB andW are the vectors representing the reflectance spectra of the black

and white panels, respectively.

As shown in Equation-17, the calibration of the images into reflectance images
requires at least one image over a white reference panel and one image bbeek
reference paneivhichtheir reflectance is known. Both reference panels should be large
enough to cover the whole sample imaged by the camera and should have a highly
homogeneous reflectance. The images of the white and black reference pardlbeshou
acquired each time before acquiring the sample images. The black panel image can be
produced simply by covering the input lens with a black cap, while the white panel
image is usually acquired over aSpectralon panel Gpectralon Co.,

www.labsphere.coin

In several studies on wood property estimation using-N8R data, this step is
the only preprocessing step, and spectra were used directly in the mddeliagti et

al., 2013 Fernandes et al., 201,3%013a Kobori et al., 2013
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1.5.2.2. Bad pixels

The NIR wood spectra can exhibit random reflectance maxima and minima at
some wavel ermhaltphet®, acsa | sl hegdre biliThey are due to the
following causes: (i) the detector saturates, (ii) the detector does not measure any
reflectance, (iii) the detector always measures the same reflectance value, dnel (iv)
detector measures only a proportion of the true reflect@@mhn and Geladi, 2007
These extreme reflectance values can be replaced by the reflectance of neighbor
wavelength chamels(Burger, 200%. Since the position of the bad pixels is the same in
all images, they can be found using the black and white panel images and their position

can then be used to correct all the images aeduiver the wood samples.

After finding the wavelengths corresponding to extreme reflectance values, the
corresponding reflectance values need to be estimated. This can be done simply by
replacing the average of r ef hgisg suehrasieis val u e

done with mean or median filters.

In this thesis, we use a median filter because a median filter can work with non
linear data and does not consider the statistical data distrib{Richards and Jia,
2006. A median filter sorts the reflectance values within the bad pixel window in
descending or ascending order, and the middle of the sorted data is selected as the filter
output. The output excludes the valueghich do not fit the pattern of the local

neighborhood.
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Figurel-11: Raw spectra contains bad pixel, which can be recovered by a median filter

1.5.2.3. Abnormal spectra

Generally, i mages acquired with digite
pixels, which produce abnormal spectBurger and Geladi, 2005In Figure 1-12, all
the spectra are associated with the same wood sample, but some of them are
distinctively different than the majority of the spectra. These dead pixels correspond to
the following cases(l) the sensor is not measuring at the pixel location; (2) the sensor
is producing an abnormal DN value at the pixel location; (3) there are bark, knots, and

other defects in the imaged wood at the pixel location.
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Figurel-12: Reflectance spectra for a sample that also contain abnormal spectra.

Several methods have been proposed to identify these abnormal spectra. In a
study using hyperspectral images over loblolly pine wood disks, pixels of the bark and
knot region were visually delineated and masked(bldra et al., 2011} but such a
method can be tedious and inaccurateumm et al. (210) removed norwood spectra
from the dataset by a simple threshold reflectance between 1260 and 1460 nm. Such
method may not be accurate or extended to other species. In this thesis, we used a
combination of the principal component analysis (PCA) drelboxplot method of
Laurikkala et al. (2000)First, the spectra are projected using PCA into a new space that
has uncorrelated axis. PCA projection allows us to easily identify abnormal spectra
since they are located outside the cloud, Wwhicc or r esponds to the fAg

two-dimensional planes made by the first and second principal components.
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The Mahalanobis distance between the cloud point median and the individual

spectra can then be calculated(Rychards and Jia, 2006

o +£ L + L Ly

Equationl1.18

where D is the Mahalanobis distance of a spectrum from the cloud point median,
X'is the PG and PG vectors for an individual spectrutdm is the median PCand PG
vectors for all spectr a, jaachRE Bfcontrasttbthee c o v e
Euclidean distance, the Mahalanobis distance allows us to consider the weight of the

PCs: PG has ahigher weight in the distance calculation than.PC

These distances are then used intdothyplotmethod ofLaurikkala et al. (2000)
as follows. The first ( and third (@) quartiles of the distance distribution are

computed as:

n v o p

n TV . p

Equationl.19

where N is the number of spectra. These quartiles are then used to compute the
maximum distance (MAX), which is the acceptable distance for an individual spectrum

canpresent in order not to be considered as an abnormal spectrum, as:
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Equationl.20

Every time abnormal spectra are removed from the dataset, the median value of
the cloud may change. Therefore, thexplot method neesito be applied iteratively,
which can be time consuming. In practice, since the median of the cloud changes very
slightly, the numbr of iterations can be limited to two or three. Because each spectrum
is associated with a particular pixel of the sample image, the position of the abnormal

pixels in the image can also be found.

1.5.3.Wood properties prediction

Most of the studies using NIBpectra to predict wood properties are based on
pointmeasurements. There are few studies that use hyperspectral images. Hyperspectral
imaging systems have been tested to identify compression wood in Norway spruce
(Picea abied..) and in Scot pineRinus sylvestrisL.) lumber (Nystrom and Hagman,

1999. The wavelength range of the system was between 400 and 710 nm with a spectral
resolution of 1.2 nm. The camera was set at 70 cm from the wood surface and provided
images with a spatial resolution of 0.45x2.5 mm in csesgion and along the lumber.
Hyperspectral imaging was also used for detecting compression wood in Norway spruce
stem crossections(Duncker and Spiecker, 2009The range of wavelengths used was
between 400 nm and 1000 nm with a spectral resolution of 5 nm. The spatial resolution
of the images was less than 0.1 mm. More recently, these systems have been used to
map the chemical composition of wogthumm et al., 2010 These authors collected

spectra over the range 8001700 nm with a 3.6 nm spectral resolution to provide the
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distribution of lignin, galactose, and glucose. The camera was set at 49.5 cm above the
sample surface and provided images with a spatial resolution of 1.0%onma.et al.
(2011b)used a hyperspectral imaging systwworking in the 10060700 nm range with a
spectral resolution of 5 nm to map the MC and density of loblolly ptneué Taedd..)

disks. In order to get the spatial resolution of less than 1 mm, the camera was set at 1.5
m above the target. An imaging syst¢éhat works in the 462000 nm spectral domain

with a 3.7 nm spectral resolution was also employed to the map MC of European beech
(Fagus sylvaticd..) and Scots pineRinus sylvestrid..) disk crosssections(Kobori et

al., 2013. The spatial resolution of the images was around 0.06x0.11 mm.
Hyperspectral image in the range of 3BIP8 nm with the spatiaésolution of less than

0.1 mm was also used to predict the density of Stone pimeig pinea disks They
employedX-ray images to calculate the density and built models to estimate density
through two different algorithms, PLS and ANAIrtificial Neural Network)(Fernandes

et al., 2013h20139. Wood color changes caused by photo degradation have also been
examined by VISNIR hyperspectral images acquired over popRopulus spp.board
samples (which had an MC of 12%) in twdfelient wavelength ranges: 40000 nm

and 10062500 nm(Agresti et al., 2013

The main difference between the modeling of wood properties in traditional NIR
spedroscopy and in NIR hyperspectral imaging is that, in NIR spectroscopy, there is a
reference value for each collected spectrum, whereas in NIR hyperspectral imaging,
there is one image containing more than hundreds of spectra for each reference value.
This issue makes hyperspectral image analyses more complex. One solution is to

summarize the spectra of each image by considering the median or mean spectrum. An
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alternative approach is to consider a region containing more than one spectrum for each
Image andepeating the reference value for all spectra in the region. In the estimation of
MC for subalpine fir speciesjaddadi et al. (2015a&pnsidered both methods and found

that the highest accuracy was obtained with the median spectra from each sample. Also
the aforementioned studies of wood MC and BSG estimation using hyperspectral
imaging systems did not consider the influence of species, anisotropy, log condition
(frozen anl thawed), and hygroscopicity in the modeling. In this thesis, the influence of

some of these factors is examined.

1.6. Thesis goal, objectives, and hypotheses

The overall goal of this dissertation is to test and develop an NIR hyperspectral
system that could be used as a fast-testructive sensor for monitoring the spatial
distribution of moisture content (MC) and basic specific gravity (BSG) of logs and
board. This system will help to characterizeth wood propertieand the distribution
of wood properties Such an optimization could lead to a decrease in energy
consumption and manufacturing costs and to an improvement of the quality of the final
products. log sorting according to moisture content is important for the oriented strand
board (OSB) industry for example because this property affects log shave size and glue
bonding. It has been shown that the fgl@structive estimation of wood MC in the OSB

industy could save up to $300,000 annughynudson and Chen, 20p1

Monitoring log BSG is important for the pulp and paper industry, to replece
high BSG black spruce by low BS@spenBecause lowBSG equa to poor strength

propertiegBarnett and Jeronimidis, 2003umber MC is important to be monitored in
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the kiln drying process because of a huge energy consumption, which can be reduced
using advaned control systemé_éger and Amazouz, 20p3Wood MC is finally an
important element in wood transportation cost. Besides having a direct influence, MC
and BSG are also related to other wood properties, such as physical and mechanical
properties, resistance to biological deterioration andstability in dimensior(Panin

and De Zeeuw, 198MBarnett and Jeronimidis, 200Bowyer et al., 200,7Isaksson et

al., 2013.

This thesis work is part of a research programntestigate several NDTE
methods that perfectly meet the above mentioned requirements for characterizing wood
moisture content and density. The other NDTE methods includeinfezned (NIR)
spectroscopy, timeesolved NIR, GPR, and nuclear magnetic resoaafNMR)
imaging were the subjeof two other companion thesdsowever, except for the NMR
imaging systems, these systems only provide spot measurements, which cannot reflect
the spatial variability of the property in wood. Biological materials like waoel
heterogeneous. Thuenly one measurement or even some measurements in different
locations are not sufficient to show the distribution of wood properties across the
product. Near infrared hyperspectral imaging (NHBI) systems can provide such
distribution of wood properties at a fine resolution by capturing thousands of spectra
within a twoedimensional space in a short period of tif@eladi et al., 2004Salzer and

Siesler, 2009

This dissertation is limited to the investigation of NIR hyperspectral images to

estimate MC and BSG of logs and lumber related to seveeabpecies (black spruce,
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quaking aspen, balsam poplar, and subalpine fir) that have a major economic importance
for the Canadian forest products sector. The imaging system that will be tested here is a
line scanning system, as line scanning systems altlqwirng images of samples of any

size at a high spatial and spectral resolution. In order to be used in the plant, the
acquired images should be processed as fast as possible. The images should also be able
to measure MC and BSG over frozen material daat occur in Canada during winter.

Most of the previous NIR spectroscopy dss empirical statistical approach and it is
necessary to test a more deterministic approach using pinasiesl theories such as the

KubelkaMunk theory.

Two majorobjectiveswvere pursued:

1 To test the use of NIRHSI images acquired over logs and lumbers to
produce 2D images of MC and BSG through a combination of an image
processing method and partial least squares model.

1 To determine wood MC using a more deterministic approach based on the

Kubelka-Munk theory and to derive related wood optical parameters.

1.6.1.Image processing method

NIR hyperspectral imaging systems have been tested to identify compression
wood (Nystrom and Hagman, 199®uncker and Spiecker, 2009 map chemical
composition of wood Thumm et al., 2010 and to estimate MC and baslensity of
loblolly pine, European beech, Scots pine, and Stone (ma et al., 2014,

Fernandes et al., 201,32013a Kobori et al., 2013 However, in all of these studies, the
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image processing method involved several manual visual interpretations of the image,

which can be tedious and produces inaccuratetsesul

A first specific objectiveof this thesis is to develop a fast image processing
method that allows retrieving clean spectra from &l images acquired over logs

and lumber.

The following hypotheses were made:

1 Recovering bad pixels that produce erte reflectance values at some
wavelengths can be done using a median filter

1 Abnormal spectra can be removed using a combination of a principal component
analysis (PCA) with theoxplotmethod ofLaurikkala et al. (2000)

1 The image processing method shoulddst and reliable regardless of the wood

properties.

1.6.2.MC and BSG 2D images

As reviewed in Haddadi et al. (2015a, 2015b) and Leblon et al. (2018),
majority of the studies employing NIR spectra for estimating wood WM®SG use
point measurements that are not able to give a spatial distribution of the property across
the sample. A few studies estimated MC or BSG images fromHERimages using
partial least squares modéMora et al., 2011bFernandes et al., 201,3Kobori et al.,
2013. However, all these studies were done over thawed wood and there is the need to

test the models over frozevood which occurs in Canada during winter.
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A second objective is to develop partial least squares (PLS) regression models
that allow producing 2D images of MC and BSG of the logs or boards. The models take
into account the influence of the tree speciesbfuth the logs and the lumbers, and in
the case of the log, of the log state (frozen/thawed). The species considered in the thesis
were chosen for their economic importance in Canada: black spPicza(mariana
Mill.), balsam poplar Ropulus balsamiferd..), quaking aspenPppulus tremuloides

Michx.), and subalpine firAbies lasiocarpaiook.)

The following hypotheses were made:

1 MC and BSG of boards and logs can be predicteddestructively and in real
time directly using an NIR4SI system using partig&ast squares models.

1 Partial least squares models applied to NIR images acquired over subalpine fir
boards can produce 2D images of MC and BSG

1 Partial least squares models applied to NIR images acquired over frozen and
thawed logs from three different gjes and collected on can produce 2D images
of MC and BSG independently of the species and the log state

1 Partial least squares models are effective to estimate MC images frotANIR
even if the MC values are large

1 BSG images are better estimated, if th€ bf the sample is low
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1.6.3.Wood MC and other optical wood properties using the Kubelkaviunk

theory

All the aforementioned studies that estimated MC or BSG from NIR spectra are
based on partial least squares models that have an empirical nature, beingicalstatist
multivariate analysis. An alternative would be to use a more deterministic approach that
estimates wood optical parameters using a pmmsed model. Only one optical model
was developed so far, which explicitly describes the interaction betweend woo
characteristics and NIR spectra using the Kub&lkak theory(Tsuchikawa et al.,

1996. Wood is modeled as an aggregate of safimite inclined square tubes
representing the tracheids with a membrane havingric thickness. The model
assumes that the incident radiation is made of parallel beams. The model was developed
for Sitka spruce and there is the need to test the method over other species of economic
importance in Canada, such as black spruce andrguakpen. AlsoJ suchikawa et al.

(1996 s model onl y e s Kianthstattesingt /toefficienbspextrap t i o n
from NIR reflectance spectra and there is the need to estimate MC fraf treS

spectra. Also, th&, and S /spectra allow computing other wood optical parameters,

s