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Abstract

This thesis explores the classical and quantum aspects of dust + gravity sys-

tems with the dust field playing the role of time.

In the classical setting we explored the linearized theory of dust + General

Relativity around a Minkowski background. The resulting theory has three

physical degrees of freedom at each spacetime point. At the linearized level

we recovered two graviton modes and an ultralocal scalar mode. Remark-

ably the graviton modes remain Lorentz covariant despite the time gauge

fixing. The other classical models we studied were the homogeneous and

anisotropic Bianchi I and IX spacetimes. The dust time gauge analysis of

Bianchi IX spacetime gives a new physical picture where dust Bianchi IX dy-

namics is characterized by transitions between dust-Kasner solutions rather

than vacuum-Kasner solutions. We derived a generalized transition law be-

tween these solutions which includes a matter component. Sufficiently close

to the singularity this law reduces to the usual Belinski-Khalatnikov-Lifshitz

map.

In the quantum setting we explored two homogeneous models with dust. We
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de-parameterized the theory using the dust time gauge before quantization.

For homogeneous models this is the reduced phase space approach to quan-

tization. The first model we studied was spatially flat Friedmann-Lemâıtre-

Robertson-Walker model with dust and a cosmological constant (Λ). We

showed that after gauge fixing and a canonical transformation the model re-

duces to a simple harmonic oscillator with frequency
√

Λ. The (Lorentzian)

quantum theory of this model is then immediate. The model provides a

simple demonstration of non-perturbative singularity avoidance. The other

model we investigated was the Bianchi I model with dust. We formulated

the path integral for the model using the physical Hamiltonian obtained af-

ter gauge fixing the theory using dust as time. The quantum theory of this

model is not solvable analytically. We studied the quantum dynamics using

Markov Chain Monte Carlo techniques by considering the Euclidean path in-

tegral. Numerical semiclassical analysis shows that quantum fluctuations in

the spatial volume and anisotropies are larger for smaller universes. We also

evaluated the no-boundary wavefunction for this model. The no-boundary

wavefunction implies a suppression of large universes while large anisotropies

appear to dominate.
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Chapter 1

Gravity and Time

Modern theories of fundamental physics are formulated within the frame-

work of quantum mechanics (and quantum field theory) and have enjoyed

immense experimental success. A common feature of these theories is that at

sufficiently low energies these theories reduce to their classical counterparts.

The only exception are theories of gravity which are inherently classical and

have resisted a quantum formulation for more than half a century. A the-

ory of quantum gravity would provide a mathematically consistent way of

incorporating gravity into the quantum framework which describes all other

interactions in our universe. But the need for quantum gravity goes be-

yond the demands of consistency and elegance. Our most successful theory

of gravity, Einstein’s theory of General Relativity (GR), appears to break

down in regimes with extremely high densities of matter where the curvature

of spacetime diverges to infinity. Examples of such regimes are interiors of
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black holes and the period of the Big Bang predicted by classical cosmol-

ogy. These regimes are marked by the appearance of singularities (spacetime

points with infinite curvature) where trajectories of free falling observers

(geodesics) come to an abrupt end. Given the high energy densities in these

regions we expect both geometry and matter to be described by a quantum

theory. The hope is that these singularities in the classical theory will be

resolved in the quantum theory. Understanding these singularities provides

an urgent motivation for developing a quantum theory of gravity.

The next section provides a general overview of approaches to Quantum

Gravity. Section 1.2 discusses the ADM formalism which is the starting point

for canonical quantisation of GR and Section 1.3 elucidates the problem of

time in the canonical approach to quantum gravity.

1.1 Approaches to Quantum Gravity

The most successful theory of gravity is Einstein’s theory of General Rela-

tivity (GR)[91]. Predictions of GR have been verified by solar system ex-

periments [43, 82, 28], galactic experiments [14, 2], in binary pulsar systems

[89, 64, 90] and by the direct observation of gravitational waves [1].

However, in the roster of successful physical theories GR stands apart.

Unlike other theories, GR is not formulated on a fixed background structure

but intertwines the roles of matter and geometry. This implies that there

is no preferred coordinate system in which the theory takes an especially
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simple form. This lack of preferred markers of space and time has profound

consequences for both the classical theory and any attempt to quantize it.

In the classical theory the lack of fixed background structure implies that

what appear to be different configurations of matter and geometry may in fact

be equivalent (under diffeomorphisms). That is, much like a gauge theory,

there exist redundant (or non-physical) degrees of freedom in the theory and

we must take great care in distinguishing between true physical effects and

coordinate artefacts.1 The central difference between gauge transformations

in GR and gauge transformations in Yang-Mills type gauge theories is that

the Yang-Mills gauge group acts at a fixed spacetime point whereas the

diffeomorphism group transforms the spacetime points themselves.

For the quantum theory the lack of fixed background structure implies

that standard quantization techniques when applied to GR either lead to

inconsistencies or result in a non-renormalizable theory. Thus, several ap-

proaches are being investigated to formulate a theory of quantum gravity and

each comes with its own set of challenges. These approaches can be classified

into three broad categories (with considerable overlap)[59]:

• The most conservative set of approaches attempt to apply some quanti-

zation procedure to a formulation of GR and consist of the two branches

of covariant quantization techniques, which aim to keep the general co-

variance of GR transparent during quantization, and canonical quanti-

1This redundancy in the description of the theory is most easily seen in the ADM
formalism which we will discuss in Section 1.2.
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zation techniques, which start from a Hamiltonian formulation of the

theory. Loop quantum gravity and its modern variants like spin foams

as well as causal dynamical triangulations are examples of such ap-

proaches.

• The second category of approaches begin from a particle physics stand-

point and attempt to incorporate gravity into quantum theories of mat-

ter by extending or generalizing these theories. Though the initial

approaches in this category were stalled due to the perturbative non-

renormalizability of gravity, String Theory and the asymptotic safety

program are flourishing directions.

• The third category comprises approaches that attempt to formulate

a theory of quantum gravity ab initio and recover either full GR or

connect with more conservative approaches in some appropriate limit.

Programs like Causal Set Theory, modern formulations of Spin Foams

and Group Field Theory are examples from this category.

In this thesis we will consider an approach that belongs to the first cat-

egory. In particular, we start from a Hamiltonian formulation of GR and

attempt to quantize the theory after a partial gauge fixing. This allows us

to circumvent the well known problem of time in canonical quantum gravity.
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1.2 ADM Formalism

The Arnowitt-Deser-Misner (ADM) formulation is a Hamitonian formulation

of GR which starts with the Einstein-Hilbert Lagrangian density

L =
√
−gR, (1.1)

where g is the determinant of the spacetime metric and R is its Ricci scalar.

ADM performed a Legendre transform of this Lagrangian, by foliating the

spacetime manifold into a series of spacelike hypersurfaces, to arrive at a

Hamiltonian in terms of the spatial metric on these hypersurfaces (qab) and its

momentum conjugate (πab), which contains information about the extrinsic

curvature of the hypersurfaces, along with the lapse function (N) and the

shift vector (Na) which encode the foliation independence of the theory [13].

Consider a globally hyperbolic manifold M foliated into a family of one

parameter spacelike hypersurfaces Σt labelled by a parameter t which is con-

stant over each hypersurface (see Figure 1.1). Let gab be the spacetime metric.

If the manifoldM has the topological structure Σ×R the spacetime metric

can be decomposed as

gab = qab − nanb, (1.2)

where qab is a Riemannian metric on the spacelike hypersurface Σ and na is

a timelike unit normal to Σ. Let ta be a timelike vector field M. We can
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Figure 1.1: A 3 + 1 foliation of spacetime.

interpret ta as the flow of time and decompose it as

ta = Nna +Na, (1.3)

where N is the lapse function and Na is the shift vector defined as

N = −gabtanb, Na = qab t
b. (1.4)

Thus, the lapse function gives the rate of flow of proper time with respect to

t and the shift vector gives the movement tangential to the hypersurface Σt.

The spacetime metric can be written as

gabdx
adxb = −(Ndt)2 + qab(dx

a +Nadt)(dxb +N bdt). (1.5)

Thus the configuration variables qab, N and Na are equivalent to gab. The

canonical momenta conjugate to these variables are defined as

πab =
∂L
∂q̇ab

, πN =
∂L
∂Ṅ

, πaN =
∂L
∂Ṅa

, (1.6)

where dot indicates a Lie derivative along ta. The Hamiltonian of GR in
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terms of these variables is

H = N

(
1
√
q

(
πabπ

ab − 1

2
π2

)
−√q(3)R

)
− 2NaDb(π

b
a)

= NHG +NaCa. (1.7)

The Hamiltonian does not contain any terms with πN and πaN which are iden-

tically zero. This implies that the lapse and shift are not dynamical variables

but act as Lagrange multipliers enforcing the Hamiltonian(HG = 0) and dif-

feomorphism Ca = 0 constraints. These are first class constraints which

impose the diffeomorphism invariance of GR. The Hamiltonian constraint

results from the time reparameterization invariance of GR while the diffeo-

morphism constraints encode invariance under spatial diffeomorphisms.

The complexity as well as elegance of GR lies in the fact that the Hamil-

tonian of the theory is a combination of constraints. Since the constraints

commute weakly with all observables, this implies that the Poisson bracket

of all observables with the Hamiltonian (Hamilton’s equations) is zero, im-

plying that the dynamics of the theory is trivial. This does not mean that

there is no dynamical content in the theory. Instead it means we should

focus on relational dynamics, that is evolution with respect to an intrinsic

time (which is some function of the phase space variables) as opposed to an

external time parameter.

The other possibility is to construct gauge invariant observables. The

simplest such observables that one can construct are integrals of scalar den-
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sities, however these are extremely non-local and it is difficult to extract local

physics from these observables. Within the framework of perturbation theory

around a fixed background one can construct observables which are gauge

invariant only up to a particular order in perturbations. This has proven to

be a successful strategy in studying local phenomena like gravitational waves

and in Cosmology. Another framework for constructing local observables

that embraces the relational nature of dynamics in GR was introduced in

[79, 80] and extended in [41]. However, going beyond the formal level within

this framework has posed a formidable challenge.

A third approach is de-parameterization of the theory by using suitable

matter fields for gauge fixing. Essentially the matter fields play the role of

a dynamically coupled reference frame. De-paramaterized models with dust

fields and scalar fields have been explored in literature [30]. A disadvantage

of de-parameterization with matter fields is the complexity of the physical

Hamiltonian obtained after gauge fixing. In this thesis we will focus on

a partially de-parameterized model which uses a dust field to fix the time

gauge. The main advantage of this approach is that the physical Hamiltonian

obtained after this partial de-parameterization has a particularly simple form.

1.3 Time in Quantum Gravity

The role and consequences of diffeomorphism invariance in classical GR are

well understood. However, such an understanding has proved elusive in the
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quantum regime. Although the full diffeomorphism invariance of the theory

poses significant challenges for any quantization program, here we will focus

on the role of time reparameterization invariance.

Conventional formulations of quantum theory (quantum mechanics and

quantum field theory) rely heavily on the assumption that a well defined no-

tion of time external to the quantum system under consideration is available.

Important aspects of the quantum theory like the definition of the vacuum

and the invariance of the inner product under evolution are connected with

a notion of time. Moreover, the construction of the Hilbert space requires a

complete set of observables which commute at a fixed time or for spacelike

points. If quantum gravity is to be interpreted as a theory of quantum geom-

etry then notions such as spacelike separation become ambiguous since these

are defined with respect to a fixed Lorentzian metric and not a fluctuating

quantum entity.

Within the canonical formalism, following the procedure of Dirac quan-

tization for constrained systems we can proceed by promoting the canonical

variables (qab, π
ab) introduced in Section 1.2 as operators acting on a Hilbert

space satisfying canonical commutation relations. The constraints are im-

posed as operators acting on the Hilbert space which annihilate all physical

states. Thus the physical Hilbert space is a subspace of the kinematical

Hilbert space and consists of states annihilated by the constraints. For the
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Hamiltonian constraint this gives the famous Wheeler-DeWitt equation

HG |ψ〉 = 0 (1.8)

This equation lies at the heart of the ‘problem of time’ in canonical quantum

gravity. Since the Hamiltonian HG is the generator of time translations, the

WDW equation tells us that the state vectors |ψ〉 are ‘frozen‘. The problem

can also be stated for observables of the theory. Since physical observables in

any gauge theory must commute with the constraints, observables in canon-

ical quantum gravity commute with the Hamiltonian and are therefore non

evolving. As in the classical theory this means that in order to talk about

dynamics we need some intrinsic notion of time. At this point there are two

ways to proceed. An internal time is identified and the theory is deparam-

eterized before quantization or a timeless quantization is implemented and

time is identified after quantization. A criticism of the first approach is that

the degree of freedom chosen to play the role of time remains classical. If

a matter degree of freedom is chosen as the internal time, this raises the

question of applicability of this formalism in regions of high energy densi-

ties where we expect matter to behave quantum mechanically. The second

approach faces several technical and interpretational challenges like identi-

fication of a suitable inner product and interpretation of the wavefunction.

For details see [9, 62].

There are other approaches to quantum gravity which proceed without
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any identification of time either before or after quantization. The most con-

servative of such approaches attempt to formulate dynamics in purely rela-

tional terms. The most well developed of these approaches is the formalism

of complete and partial observables [78, 42, 41, 49, 85]. The main challenge

with this approach is the complexity involved in pushing calculations beyond

the formal level.

In this thesis we will focus on the first approach of indentifying a time

and deparameterizing the theory before quantization. We focus on using a

particular type of matter field (dust) to partially deparameterize the theory

and investigate both the classical and quantum dynamics of this partially

deparameterized theory.

This thesis is organized as follows: Chapter 2 outlines our model and

deparameterization scheme. It also introduces the quantization scheme used

to quantize the deparameterized theory and the Monte Carlo techniques we

use for numerical computations. Chapter 3 explores the linearized theory

in this matter time gauge. Chapter 4 investigates the mixmaster dynamics

in the dust time gauge. Chapter 5 and 6 discuss the quantum dynamics of

two symmetry reduced models. Chapter 7 provides a summary of the work

detailed in this thesis and discusses future directions.

11



Chapter 2

Quantization with an Ideal

Clock

Our everyday experience of time involves clocks made of matter. Modelling

these clocks requires that we specify the internal dynamics of these clocks,

which can be extremely complex. However, we can deal with this in the

same way as we deal with other complex problems in physics - by means of

an idealization. Instead of real matter clocks an ideal matter field may be

used as a clock. As we’ll show in this chapter, using a dust field as our ideal

clock leads to a simple physical Hamiltonian [61].

It is well known that for full general relativity with matter content like

dust fields [30] and scalar fields, the theory can be fully de-parameterized by

treating the matter fields as a dynamically coupled physical reference frame.

However, after a complete gauge fixing the physical Hamiltonian obtained

12



by solving the Hamiltonian constraint for the momentum conjugate to these

matter fields is usually a square root Hamiltonian. The dust time gauge

discussed in this chapter is a modification of the approach presented in [30].

It involves a partial gauge fixing by using the dust field as a time variable and

solving the Hamiltonian constraint while leaving the spatial diffeomorphism

constraints intact. This leads to a regular gauge theory with a physical

Hamiltonian. Sections 2.1 and 2.2 detail the particulars of this partial gauge

fixing. Section 2.3 presents the path integral approach to quantization for

general relativity in the dust time gauge and Section 2.4 provides details of

the Monte Carlo techniques we will use in this thesis to study the quantum

dynamics of gravity + dust models.

2.1 General Relativity + Dust

The action for GR coupled to a dust field is given by

S =
1

2π

∫
d4x
√
−gR− 1

4π

∫
d4x
√
−g M(gµν∂µφ∂νφ+ 1). (2.1)

The second term is the dust action. The parameter M enforces the con-

straint that the gradient of the dust field (φ) is timelike. The form of the

stress energy tensor indicates that on-shell M is the energy density of the

dust field.
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The ADM canonical theory obtained from this action is

S =
1

2π

∫
dt d3x

(
πabq̇ab + pφφ̇−NH−NaCa

)
, (2.2)

where the pairs (qab, π
ab) and (φ, pφ) are respectively the phase space vari-

ables of gravity and dust. The lapse and shift functions, N and Na are the

coefficients of the Hamiltonian and diffeomorphism constraints

H = HG +HD, (2.3)

Ca = CGa + CDa

= −2Dbπ
b
a + pφ∂aφ, (2.4)

where HG is the gravitational part of the Hamiltonian constraint and

HD =
1

2

(
p2
φ

M
√
q

+M
√
q(qab∂aφ∂bφ+ 1)

)
. (2.5)

The momentum conjugate to the field M is zero since it appears as a

Lagrange multiplier in the covariant action. At this point one could enlarge

the phase space to treat M and its conjugate momentum as independent

degrees of freedom, subsequently eliminating them by gauge fixing. However,

it is more straightforward to vary the term HD in the canonical action with

14



respect to M , and use the resulting equation of motion:

M = ± pφ√
q(qab∂aφ∂bφ+ 1)

. (2.6)

This can then be substituted back into HD to give

HD = sgn(M) pφ
√
qab∂aφ∂bφ+ 1, (2.7)

leaving a canonical action for (qab, π
ab), (φ, pφ). It is readily verified that the

constraints remain first class with this elimination of M . We will see in the

gauge fixing below how the sign is selected.

2.2 Dust time gauge

We can now partially reduce the theory by fixing only a time gauge, and

solving the Hamiltonian constraint to obtain a physical Hamiltonian. The

spatial coordinates remain unfixed. We use the dust time gauge [61, 83] which

equates the physical time with the dust field, i.e., the spatial hypersurfaces

are level surfaces of the dust field,

λ ≡ φ− εt ≈ 0, ε = ±1. (2.8)

This is a special case of the Brown-Kuchař matter reference frame that

fixes all four coordinate gauges. The condition Eq. (2.8) has a nonzero Pois-
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son bracket with the Hamiltonian constraint, so this pair of constraints to-

gether is second class. Furthermore, this condition implies that qab∂aφ∂bφ =

0, resulting in a dust Hamiltonian linear in the momentum i.e., HD =

sgn(M)pφ.

A gauge condition is deemed good if the matrix of Poisson brackets of

second class constraints is invertible and demanding that the gauge condition

be preserved in time does not lead to new constraints. The first of these gives,

using Eq. (2.7), the Dirac matrix of second class constraints

C =

 0 {λ,H}

{H, λ} 0

 = sgn(M)

 0 1

−1 0

 . (2.9)

This matrix is invertible everywhere on the manifold. Thus, the dust time

gauge does not breakdown at any point and is therefore a robust choice. The

second condition, requiring that the gauge condition be preserved in time,

gives an equation for the lapse function:

ε = φ̇ =

{
φ,

∫
d3x (NH +NaCa)

}∣∣∣∣
φ=t

= sgn(M)N . (2.10)

The corresponding physical Hamiltonian density is

HP = −εpφ = sgn(M) εHG = NHG, (2.11)

where the third equality follows from solving the Hamiltonian constraint and
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the last follows using (2.10). We also note that the definition of pφ from the

dust action, in this gauge, gives

pφ =
M

N

√
qφ̇ = sgn(M)ε

|M |
N

√
q = |M |√q〉0. (2.12)

Thus, positive dust energy density corresponds to a positive Hamiltonian

density if N = −1, implying ε = −1. Substituting into Eq. (2.2) gives the

gauge fixed action

SGF =
1

2π

∫
dt d3x

[
πabq̇ab +HG −NaCGa

]
, (2.13)

up to surface terms, which do not concern us here. Thus we see that in the

dust time gauge the diffeomorphism constraint reduces to that with only the

gravity contributions, and the physical Hamiltonian is

Hp = − 1

2π

∫
d3xHG. (2.14)

The corresponding spacetime metric is

ds2 = −dt2 + (dxa +Nadt)(dxb +N bdt)qab. (2.15)

In the presence of other matter fields the gauge fixed action takes the simple
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form

SGF =
1

2π

∫
dt d3x

[
πabq̇ab + pχχ̇+

(
HG +HM

)
−Na

(
CGa + CMa

)]
, (2.16)

where the matter fields are symbolically denoted by (χ, pχ) although the

number of fields and their tensorial structures depend on the choice of matter

Lagrangian. The matter Hamiltonian is denoted as HM and the matter part

of the diffeomorphism constraint is denoted as CMa .

By fixing the time gauge we have only partially reduced the theory. The

gauge fixed action is still invariant under spatial diffeomorphisms. However,

now the theory resembles a conventional gauge theory with a physical Hamil-

tonian providing dynamics.

It is curious that in the dust time gauge solutions that satisfy Hp = 0

correspond to vacuum solutions of GR. This leads to the apparent contra-

diction that vacuum solutions of GR are recovered in the presence of a dust

field. At the level of the covariant Lagrangian for the GR + dust system

no contradiction exists. Here, the parameter M plays the role of a Lagrange

parameter that enforces the constraint that the four velocity of the dust is

timelike. As it happens, the equations of motion allow for solutions for which

the Lagrange parameter vanishes and the dust field is allowed to be arbitrary.

These solutions correspond to vacuum solutions of GR. The dust time gauge

then picks out some such solutions for which the φ̇ = 1. At the canonical

level, it is important to note that when Hp = 0, the energy density of the dust
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field (M) also vanishes. An important aspect in which the dust time gauge

solutions differ from vacuum GR solutions is that these systems still involve

an additional physical degree of freedom which can be perturbed. This is

evident when we study the linearized theory around Minkowski spacetime in

the dust time gauge.

In the remainder of this thesis we will explore the classical and quantum

aspects of this theory. In particular, we will discuss the quantum dynamics of

the homogeneous sector of the theory. We will proceed by symmetry reducing

the theory before quantization. Though it is unclear how this truncated

model relates to the quantum theory of the full model, we hope that central

features of the quantum dynamics of the symmetry reduced model survive

in the full theory.

2.3 The Path Integral approach

The main considerations in setting up a path integral for gravity are the

choice of the action for gravity, the choice of measure on the space of paths

(here spacetime metrics) and the choice of discretization scheme for the grav-

itational action. Formally we can write the path integral as

Z[g] =

∫
D[g] exp{i SGR[g]} (2.17)
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or in the canonical formalism as:

Z[π, q] =

∫
D[q]D[π]D[N ] exp{iSADM}, (2.18)

where the integrations (
∫
D[N ]) over the lapse function (N) and the shift

vector (Na) impose the hamiltonian and diffeomorphism constraints. The

difficulty in defining the measure arises due to the diffeomorphism invari-

ance of GR, which necessitates that in order to ensure the path integral

converges the measure must be chosen such that all geometries related by

diffeomorphisms are counted only once. In the language of gauge theories,

we need to define a measure on the space of all metrics quotiented by the

diffeomorphism group. Generally for gauge theories, such an overcounting is

prevented by imposing a gauge condition in the path integral using a proce-

dure like Faddeev-Popov or more generally by constructing the integral using

BRST quantization. Such procedures have been investigated in the context

of perturbation theory, quantum cosmology and lower dimensional gravity

theories, but these analyses have resisted attempts towards generalization

for full GR in 3 + 1 dimensions [84, 86, 87, 12].

In the context of canonical quantization, saddle point (semiclassical) ap-

proximations of the Euclidean Path Integral approach have been studied

extensively to find solutions of the Wheeler DeWitt equation (WDW) in the

minisuperspace setting. Specifying solutions to the WDW equation involves

selecting appropriate boundary conditions for the equation i.e., prescribing
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initial conditions for the universe. For the path integral this corresponds to

the choice of paths to be included in the integration. It was demonstrated by

Hartle and Hawking that the amplitude for a 3-geometry to arise from “noth-

ing” can be obtained by evaluating the sum over all 4-geometries it bounds.

This is the no-boundary proposal. Several proposals have since been made

for both the boundary conditions and the set of paths to be included in the

sum to find solutions of the WDW. However these proposals are all restricted

to semiclassical approximations of the path integral and no generalization to

the full non-perturbative setting has been explored.

Another possibility of constructing the path integral and bypassing these

difficulties is offered by the reduced phase space approach. Here, the quan-

tization proceeds after classically fixing all gauges and solving all first class

constraints. Using the dust time gauge detailed in the previous sections,

we obtain a simple physical Hamiltonian and the path integral can be con-

structed as follows:

Z =

∫
D[π]D[q]DNa exp{iSGF} (2.19)

where we have used the gauge fixed action SGF given in Eq. (2.16). Since we

have not done a complete gauge fixing, the spatial diffeomorphism constraint

still needs to be imposed and thus the path integral involves an integration

over the shift vector. This approach is exactly equivalent to the reduced phase

space approach in the minisuperspace setting i.e., after symmetry reduction
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to homogeneity.

2.3.1 Symmetry reduced Path Integrals

We are interested in constructing the minisuperspace path integral in the

dust time gauge. Classically, the reduction to the homogeneous sector in the

dust time gauge begins with the spacetime metric ansatz:

ds2 = −dt2 + qij(t)ω
iωj (2.20)

where ωi are invariant 1-forms corresponding to the isometry group of the

spatial manifold and we set N i = 0 without loss of generality.

Due to homogeneity the diffeomorphism constraint is trivially satisfied

and the gauge fixed action is given by

SSR−GF =
1

2π

∫
dt d3x

[
πabq̇ab −Hp

]
, (2.21)

with

Hp = −HG. (2.22)

It is straighforward to construct the path integral for this symmetry reduced

model. We first define the Lagrangian density for the degrees of freedom of

the reduced phase space via a Legendre transform:

Lp(qab, q̇ab) = πabq̇ab −Hp (2.23)
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and construct the Feynman path integral as:

Z =

∫
D[q] exp

{
i

∫
dt d3xLp([q], [q̇])

}
. (2.24)

The measure is defined as

D[q] = lim
N→∞

N∏
n=1

d[qn] (2.25)

where [qn] denotes the spatial metric for the nth hypersurface i.e., each hy-

persurface is a 3-dimensional time slice and the square brackets denote that

we have suppressed the indices of a tensor.

In this symmetry reduced sector the quantization of this gauge fixed the-

ory is equivalent to reduced phase space quantization. It is important to note

that a time gauge other than dust time would lead to an unitarily inequiva-

lent theory. Furthermore, most other time gauges explored in literature (like

York time, scalar field time etc.) lead to a square root Hamiltonian, resulting

in further technical complications. It is also important to keep in mind that

reduced phase space quantization is generally inequivalent to Dirac quanti-

zation [81]. In Chapter 5 we discuss a quantum gravity model for which the

path integral is exactly solvable and quantization using the dust time gauge

is equivalent to Dirac quantization with a particular operator ordering.
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2.4 Path Integral Monte Carlo

Even though the dust time gauge results in a relatively simple Hamilto-

nian, in general the path integral in Eq. (2.25) is not exactly solvable and

must be tackled numerically. Monte Carlo methods are a staple tool in

many areas of physics (e.g. Lattice QCD [50], atomic and nuclear physics

[31, 77]) for solving analytically intractable integrals. In the context of quan-

tum cosmology these methods have been applied to cosmological models

[24, 23, 20] where the Hamilitonian constraint is not solved classically but

instead implemented as a constraint on the paths evaluated numerically. In

[5] we applied the Path Integral Monte Carlo (PIMC) technique to study the

reduced phase space quantization of a spatially closed Friedmann-Lematre-

Robertson-Walker (FLRW) model with a non-zero cosmological constant and

a dust field. This section introduces the central ideas behind Monte Carlo

Integration, details the PIMC algorithm and discusses some results from [5].

In Chapter 6 we will discuss the application of Path Integral Monte Carlo

(PIMC) to numerically evaluate the path integral for a Bianchi I model.

Monte Carlo integration is based on the observation that the integral of

a function f(x) can be interpreted as the expected value of f(X) where X

is a random variable uniformly distributed over the domain of integration.

That is, ∫ b

a

f(x)dx = (b− a)

∫
f(s)pX(s)ds (2.26)
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where

pX(s) =


1
b−a , a ≤ s ≤ b

0, otherwise

(2.27)

A Monte Carlo algorithm generates samples of the random variable and ap-

proximates the function f(x) with the average over N samples (Xi, i = 1..N).

We have

(b− a) lim
N→∞

1

N

N∑
i=1

f(Xi) =

∫ b

a

f(x)dx. (2.28)

For finite N, we have

∫
f(x)dx ≈ 〈f〉 ±

√
〈f 2〉 − 〈f〉2

N
. (2.29)

The generalization to higher dimensions is straightforward. In the limit N →

∞, the Monte Carlo estimate tends to a normal distribution whereas the

error terms tends to a standard deviation. Given the form of the second

term (error) in the equation above, the error in the integration is smaller for

flatter f(x). This observation leads us to notion of importance sampling for

reducing the error.

2.4.1 Importance Sampling and Markov Chains

Suppose we can find a positive function g(x) such that
∫
g(x)dx = 1 and

f(x) = h(x)g(x) with h(x) nearly constant, then the integral in Eq. (2.29)
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can be evaluated as

∫
f(x)dx =

∫
h(x)g(x)dx ∼ 1

N

N∑
j=1

h(Xj), (2.30)

where Xj is sampled from the distribution
∫
g(x)dx. The function g(x)

accomplishes the importance sampling allowing more points to be sampled

near peaked regions i.e., where the function f(x) takes its largest values.

Since h(x) is nearly flat the standard deviation of the sampled values is

small and the error in the integration is controlled.

Sampling an arbitrary distribution
∫
g(x)dx is not straightforward if the

cumulative distribution for the probability density function (PDF) g(x) is

not analytically calculable and invertible. In such scenarios, the PDF can

be sampled by a rejection method which involves choosing a random point

with uniform probability in the area under the curve g(x). Such a method

is easy to implement for one-dimensional PDFs, but does not generalize well

to higher dimensions. For multi-dimensional integrals importance sampling

can be done using stationary stochastic processes.

A stochastic process is a sequence of events Xt for t = 0, 1, 2, ..., that are

governed by a probabilistic law P (Xt|X0, ..., Xt−1) such that the conditional

probability of the event Xt occurring depends on any number of previous

events and may also depend on t. The central idea of importance sampling

using stochastic processes is to set up a stationary stochastic process whose

probabilistic law is the target distribution to be sampled for the integration.
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A stochastic process is said to be stationary when the conditional probabil-

ities are unchanged by shifts in t. This implies that the mean E(Xt) = µ is

independent of t and the variance E((Xt− u)2) is independent of t if E(X2
t )

is finite. Monte Carlo integration as described above requires statistically

independent random samples. However, the events in a stationary stochas-

tic process are not statistically independent random variates. The degree of

statistical dependence of the current sample on previous samples is quan-

tified using the autocorrelation function. By collecting samples separated

by several time steps from the stationary stochastic processes we can ensure

the autocorrelation between consecutive samples is low1. The number of

time steps that must be skipped is determined by the particular stochastic

process. Furthermore, it is possible to calculate the error introduced in the

Monte Carlo estimate due to the autocorrelation between samples,

∫
f(x)p(x)dx ∼ 1

N

N∑
i=1

f(Xi) ±

√
R0(f) + 2

∑
h≥1Rh(f)

N
, (2.31)

where Rh(f) = 1
N−h

∑N−h
i=1 (f(Xi)− 〈f〉) (f(Xi+h)− 〈f〉).

A simple stochastic process commonly used for Monte Carlo integrations

is a Markov chain. Markov chains are defined by the property that the

conditional probability for next event depends only on the current event,

i.e., P (Xt|X0, ..., Xt−1) = P (Xt|Xt−1). Ergodic Markov chains possess the

1The samples are separated in Monte Carlo time. This is completely distinct from the
dynamical time of the models we will consider.
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remarkable property that irrespective of the initial transition probabilities

(conditional probability to go from one state to the next) when the chain

is started, the transition probability converges to a unique probability dis-

tribution as the chain approaches equilibrium. Combined with the property

that ergodic Markov chains always tend towards stationarity, this can be

exploited to develop an algorithm to sample a Markov chain whose unique

stationary distribution is the target distribution we are interested in. The

process of bringing a Markov chain into equilibrium is known as thermal-

ization. Further details about Markov processes can be found in the review

[74].

2.4.2 Metropolis - Hastings algorithm

Given a PDF G(x) that we are interested in sampling, the above discussion

instructs us to construct a Markov chain whose limiting stationary distri-

bution is G(X). The Metropolis - Hastings algorithm is a simple method

for constructing such a Markov chain [54]. Moreover, it has the advantage

that the normalization of the PDF is not required for the calculation. This

is particularly useful when the normalization for a function g(x) cannot be

calculated explicitly. The algorithm proceeds as follows:

1. Given an event X, propose a new event X̃ using a normalized proposal

density P (X̃ ← X)
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2. Accept the new event with probability

A(X̃ ← X) = min

(
1,
P (X ← X̃)G(X̃)

P (X̃ ← X)G(X)

)

3. If the proposed event is rejected, retain the old event X.

The Metropolis-Hastings algorithm exploits detailed balance2 at each step to

construct an ergodic Markov Chain with the stationary distribution G(X).

A disadvantage of the method is the high autocorrelation between succes-

sive events. Usually the autocorrelation decreases as the number of steps

between events in the chain is increased. Therefore, the autocorrelation be-

tween sampled random variates can be reduced by increasing the number of

steps between sampled events. Generally, the Markov chain generated using

Metropolis - Hastings algorithm is not stationary to begin with. Therefore,

we discard several events in the chain and only start sampling after the chain

is thermalized.

2Detailed balance implies that the probability of going from one event si to another
event sj is the same as the probability of going from sj to si. Formally, let wi be the
probability of finding the Markov chain at event si in equilibrium and let wij be the
transition probability to go from si to sj , then detailed balance implies wipij = wjpji.
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2.4.3 Evaluating Path Integrals

The Metropolis-Hastings algorithm allows us to sample a probability dis-

tribution in order to generate samples to calculate Monte Carlo averages.

Path Integral Monte Carlo employs an importance sampling algorithm, like

Metropolis-Hastings, to calculate path integrals. In order to make path inte-

grals amenable to Monte Carlo integration we need to work in the imaginary

time formalism. Let us consider a single particle system with action S(x, ẋ).

The path integral for this system is defined as

Z =

∫
Dx eiS, (2.32)

with

Dx = lim
N→∞

N∏
i=1

xi. (2.33)

Expectation values of observables are calculated as

〈Ô〉 =

∫
DxO eiS. (2.34)

The integral in Eq. (2.32) & (2.34) is an N dimensional integral and highly

oscillatory. To alleviate this issue we can turn to the imaginary time formal-

ism using a Wick rotation. Under a Wick rotation t −→ it, the path integral

transforms as

Z −→
∫
Dx e−SE(x,ẋ), (2.35)
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where the overdot denotes a derivative with respect to Euclidean time. The

path integral after Wick rotation involves the factor e−SE(x,ẋ), which is a

normalisable function when SE is bounded below. Thus, we can apply Monte

Carlo integration to calculate integrals like Eq. (2.34) by generating samples

(paths) from the PDF

e−SE∫
Dφ e−SE

. (2.36)

Since the normalization factor is not generally calculable, we apply the

Metropolis-Hastings algorithm for sampling this distribution. This calcu-

lation yields expectation values for the Euclidean sector of the theory and

these numerical results can usually not be rotated to the Lorentzian sector.

However, from quantum mechanics we know that the ground state of the sys-

tem can be obtained from the Euclidean propagator in the limit of infinite

Euclidean time (τ), i.e.

lim
τ→∞

∫ xf

xi

Dx e−SE(x,ẋ) = |ψ0(xi, xf )|2. (2.37)

Moreover, correlation functions can also be obtained from the Euclidean path

integral as

〈x(t2)x(t1)〉 =

∫ xf
xi
Dx x(t2)x(t1) exp

{
−
∫∞
−∞ dτL(x, ẋ)

}
∫
Dx exp

{
−
∫∞
−∞ dτL(x, ẋ)

} . (2.38)
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Analogously for the gravitational path integral we can define the ground state

wavefunction as

|ψ0[q]|2 = lim
τ→∞

∫
D[q]DNa exp{−SGFE } (2.39)

where SGFE is the Euclidean analog of the gauge fixed action defined in Eq.

(2.13).

Let us consider the PIMC technique applied to a gravity model. In [6]

we studied a closed FLRW model with dust and a cosmological constant

using PIMC. The ADM variables for a closed homogeneous and isotropic

cosmology are

qab =
3

8
A4/3(t)hab, πab = 2A−1/3(t)pA(t)

√
hhab, (2.40)

where hab = 1
f2(r)

eab with f(r) = 1 + κr2/4, eab = diag{1, 1, 1}, and sgn(κ) =

1.

The gauge fixed action for this model is

S =

∫
dt

(
Ȧ2

2
+

Λ

2
A2 − κA2/3

)
. (2.41)

After the Wick rotation t −→ −it, the Euclidean path integral is

G(Af , Ai) =

∫ Af

Ai

DA exp (−SE) , (2.42)
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Figure 2.1: Log of the action S vs Monte Carlo time (# of MC sweeps) from
one representative run. The red dot shows the starting value of the action (for
a random initial path), the blue curve shows the action during thermalization,
the dashed black line marks the point where measurements are started, and
the green curve shows the action values during measurement. It is clear
that the action achieves thermalization after around 100,000 thermalization
steps. In the inset, the last thousand samples taken during measurement are
plotted, to show the variations in the action around its mean value.

where

SE =

∫ T

0

dτ

(
Ȧ2

2
− Λ

2
A2 + κA2/3

)
. (2.43)

As is well known, in classical theory there is a unique on-shell path

once the initial conditions are specified, whereas in quantum theory an in-

finite number of paths contribute to the Feynman path integral, each with

a phase exp(iS). After Wick rotation, the amplitude exp(−SE) may be

treated as a probability distribution on the space of paths. The PIMC tech-

nique generates a Markov chain of paths from an initial seed path, such that

the stationary distribution for the Markov chain is given by the amplitude

exp(−SE)/
∫
DA exp(−SE). In order to probe the space of paths effectively

we use the Metropolis algorithm for importance sampling.

We start by discretizing the Euclidean action for the model. The time
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interval from 0 to T is divided into N steps; A(t) → Ai, i = 1..N . For

the time-derivative, we use a forward step, Ȧ(t) → (Ai+1 − Ai)/ε. The

corresponding discrete action is

SE =
N−1∑
i=1

ε

[
(Ai+1 − Ai)2

2ε2
− ΛA2

i + κA
2/3
i

]
. (2.44)

With this discretization, the PIMC method we use proceeds as follows. After

fixing an initial path Astart{i} , (which could be selected by a deterministic or

random rule),

1. Change a random element of the array: Ai → Anewi = Ai + δ, where

δ ∈ [−∆,∆] is a random number chosen from a uniform distribution,

with ∆ a fixed parameter;

2. Calculate the change in the Euclidean action: ∆S = Snew − Sold;

3. Accept or reject this change. If ∆S ≤ 0, the change is accepted, oth-

erwise it is accepted with a probability exp(−∆S); if accepted, the

selected element is updated: Ai := Anewi ;

4. Repeat steps 1−3, N times. This defines one Monte Carlo (MC) sweep.

As discussed earlier, the Markov chain must be allowed to settle into a

stationary state via the process of thermalization. We perform Mtherm MC

sweeps to thermalize the chain and our criteria for thermalization is that the

value of the action stabilizes to some equilibrium value. Fig. 2.1 shows the
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Figure 2.2: The average quantum path 〈A(t)〉 and the classical solution Acl(t)
for various values of Λ and κ. The quantum path is close to, but distinct
from the classical path.

thermalization of the action for a representative run for a given set of MC

parameters, for a specific Astart{i} . After the Markov chain is thermalized the

paths are sampled. We generate a set of Msamp paths by sampling a path

after every Mskip MC sweeps. The number Mskip is chosen to reduce the

autocorrelation among paths. Once the set of sample paths are collected,

expectation values of observables are calculated by averaging over the set of

samples.

By seeding the Markov chain with a classical solution we can study quan-

tum fluctuations around fixed classical solutions. The end points of the

path are fixed to classical values throughout the thermalization and sam-

pling process. Using the sampled paths we can compute the expectation

value of the scale factor A(t) and the fluctuations in the spatial volume

∆V (t)/〈V (t)〉 ≡
√
〈V (t)2〉 − 〈V (t)〉2/〈V (t)〉. Figures 2.2 & 2.3 show the

results of these computations for three sets of values of Λ and κ.

For the Λ ≤ 0 case the Euclidean action for this model is bounded below

and we can calculate two-point correlation functions (Figure 2.4) as well as
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Figure 2.3: Fluctuations in the volume ∆V/〈V 〉 for the same paths as in
Figure 2.2. It is apparent that at early times and small Universes, fluctuations
are large, and gradually reduce as the Universe expands. For Λ = κ = 1
(centre plot), the fluctuations die off more slowly as compared to others
since the classical solution does not expand to sufficiently large volume.

Figure 2.4: The unique ground state wavefunction for the case Λ = −1. The
minor variations in the wave function are due to sample size and bin size.

the unique ground state of the model (Figure 2.5).

For Λ〉0, the Euclidean action is not bounded below and no unique ground

state exists. However, we can still use the PIMC technique to calculate wave-

functions of the universe. In particular, we calculate the no-boundary wave-

function. In this model, the no-boundary proposal corresponds to calculating

the amplitude of a finite spatial volume 3-geometry to emerge from a zero

volume one. That is, we integrate over sets of paths with A(0) = 0 with the
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Figure 2.5: Plots of the correlation function for A(t) and the volume V (t).
The black dots indicate the actual data points while the solid blue lines
indicate exponential curves fitted to the data. Both functions show an expo-
nential decay.

final value A(T ) ≡ q left unspecified; the wavefunction we calculate is

ψ(q, T ) =
N−1∏
i=1

∫
dAi

exp

{
−

N−1∑
i=1

(Ai+1 − Ai)2

2ε
− Λ

2
A2
i + κA

2/3
i

}
,

(2.45)

where the sample paths include only those with A0 = 0 and AN = q left

free. The wavefunctions ψ(q, T ) for both Λ ≤ 0 and Λ〉0 are determined

by binning the values of q at the last time step T . Figure 2.6 displays the

no-boundary wavefunction for Λ = 1.
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Figure 2.6: The no boundary wavefunction for Λ = 1, κ = 20. The plot was
generated using 50, 000 sample paths for each value of T . The MC runs were
started with a random path with A(t) ∈ [−500, 500] and A(0) = 0. We used
ε = 0.01, ∆ = 0.1 and Mtherm = 106. The histogram was computed using a
bin size of 0.05.
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In Chapter 6 we present similar calculations for the Bianchi I model.

We will adapt the algorithm detailed here for a single scale factor to three

independent variables. Interestingly, for the Bianchi I model, a natural reg-

ularization scheme results in a Euclidean action that is bounded below.
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Chapter 3

Linearized theory with dust

The transverse-traceless (TT) gauge is common to both the covariant and

ADM analysis of vacuum linearized theory and in both analyses yields the

two unconstrained graviton degrees of freedom. The ADM analysis starts

with the expansion of the constraints of general relativity(GR) around the

flat spacetime solution, followed by the imposition of TT gauge conditions

[13], which are four conditions that fix four coordinates. These are condi-

tions on the gravitational phase space variables alone, even when matter

perturbations are considered [65].

In a Hamiltonian setting with general relativity coupled to matter, it is

clearly possible to use matter degrees of freedom in making coordinate gauge

choices. This is not usually done because the interpretation of gravitational

waves as spin 2 fields on a background spacetime is lost. Furthermore, it is

apparent that if matter degrees of freedom (“matter reference systems”) are
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used to fix spacetime diffeomorphism freedom, then the gauge fixed theory

has additional local degrees of freedom in the geometry sector, which makes

it harder to interpret physically.

In [8] we considered this possibility in the setting of general relativity

coupled to dust and any other matter field. The analysis used the dust time

gauge detailed in Chapter 2. This chapter details the analysis and results of

[8]. The main result of this chapter is that after a complete gauge fixing the

dust degree of freedom is manifest as an ultralocal scalar mode in the spatial

metric, and the interpretation of gravitational waves as spin 2 fields on the

background is preserved.

In the next section we present the linearized theory of general relativity

coupled to a dust field in the dust time gauge. Section 3.2 comments on the

extension of the model by including a potential for the dust field. In Section

3.3 we explore the deformation of the physical Hamiltonian to include the

Hořava-Lifshitz parameter and consider its impact on the linearized theory.

Section 3.4 provides some concluding remarks for this chapter.

3.1 The Linearized Theory

Let us consider the action (2.16) without matter, i.e. χ = pχ = HM = CMa =

0. It is easy to check that Minkowski spacetime, qab = δab, π
ab = 0 = Na, is

a solution to the equations of motion in the dust time gauge1. We linearize

1It might seem strange that Minkowski spacetime is a solution in the presence of a
dust field. But it is important to note that for a Minkowski spacetime Hp = 0 implying
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the theory on this background by writing

qab(x, t) = δab + hab(x, t), πab = 0 + pab(x, t), Na = 0 + ξa(x, t). (3.1)

It is convenient to work in 3−momentum space by expanding the pertur-

bations hab, p
ab, ξa in modes of the flat space Laplacian (plane waves) as

hab(x, t) =
1

(2π)3

∫
d3k eikxh̄ab(k, t),

pab(x, t) =
1

(2π)3

∫
d3k eikxp̄ab(k, t)

ξa(x, t) =
1

(2π)3

∫
d3k eikxξ̄a(k, t). (3.2)

This allows us to write the Hamiltonian and equations of motion in Fourier

space. The background solution δab and ka may be used to define an or-

thonormal basis of symmetric 3 × 3 matrices M I so that the perturbations

can be decomposed as

h̄ab = hI(k, t)M
I
ab, p̄ab = pI(k, t)Mab

I , I = 1, 2 · · · 6. (3.3)

As we see below, the coefficients (hI , p
I) provide a natural separation of

the perturbations into scalar, vector and tensor modes. Furthermore, if the

chosen basis is static and orthonormal in the inner product

Tr(M IMJ) = δIJ , (3.4)

that the energy density of dust field (M) vanishes for this solution.
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the symplectic form decomposes as

∫
d3k p̄ab ˙̄hab =

∫
d3k pI ḣI . (3.5)

This identifies the six canonically conjugate degrees of freedom
(
hI(k, t), p

I(k, t)
)
.

A basis that fulfils these requirements is obtained by using an orthonormal

basis of vectors

k̂a = ka/|k|, ea1, ea2, (3.6)

where the latter pair span the plane orthogonal to ka. By considering rota-

tions Jσ by angle σ about the ka-axis, one obtains a definition of ‘helicity’

for the eigenvectors of these rotations; see e.g., appendix A.2.1 in [15]). The

eigenvectors of Jσ are the linear combinations ea± = (ea1 ± iea2) /
√

2. These

satisfy Jσe
a
± = e±iσea±, δabe

a
±e

b
± = 0 and δabe

a
+e

b
− = 1. The matrices

δab, k̂ak̂b, e
(a
± k̂

b), ea±e
b
±. (3.7)

are the eigentensors of Jσ: the first two are rotationally invariant and so are

(helicity 0) scalars, the next pair are (helicity ±1) vectors, and the last pair

are (helicity ±2) tensors.

A basis M I with the above properties may be made as a linear combi-

nations of these elements. We choose the scalar, tensor, and vector bases
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respectively as

Mab
1 =

1√
3
δab, Mab

2 =

√
3

2

(
k̂ak̂b − 1

3
δab
)
, (3.8)

Mab
3 =

i√
2

(
ea−e

b
− − ea+eb+

)
, Mab

4 =
1√
2

(
ea−e

b
− + ea+e

b
+

)
, (3.9)

Mab
5 = i

(
e

(a
− k̂

b) − e(a
+ k̂

b)
)
, Mab

6 =
(
e

(a
− k̂

b) + e
(a
+ k̂

b)
)
. (3.10)

The subset MI , I = 2 · · · 6 are trace free, Mab
I δab = 0, and satisfy the

transversality conditions kaM
ab
3 = kaM

ab
4 = 0 and kakbM

ab
5 = kakbM

ab
6 = 0.

We note that the tensors of definite helicity in (3.7) have zero norm in the

inner product (3.4) and lead to a degenerate reduction of the symplectic

form. For this reason the above linear combinations of helicity tensors are

necessary as basis elements in order to derive canonical equations of motion.

Our goal now is to write the linearized canonical Einstein equations in

the dust time gauge in k−space, fix three phase space gauge conditions and

solve the spatial diffeomorphism constraint. This will identify the three local

physical degrees of freedom. As we will see, two of these turn out to be the

usual polarizations of the graviton, and the third is the manifestation in the

metric of the dust degree of freedom. The details of these steps follow.
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3.1.1 Linearized equations of motion

The linearized equations about the flat background solution are

ḣab = 2

(
pab −

1

2
δabp

)
+ Lξδab

ṗab = −∂c∂(bha)
c +

1

2
∂c∂ch

ab +
1

2
∂a∂bh+

1

2
δab
(
∂c∂dhcd − ∂c∂ch

)
,(3.11)

which in k−space are

˙̄hab = 2

(
p̄ab −

1

2
δabp̄

)
+ 2ik(aξ̄b)

˙̄pab = kck(bh̄a)
c −

1

2
kckch̄

ab − 1

2
kakbh̄− 1

2
δab
(
kckdh̄cd − kckch̄

)
.(3.12)

From these, the equations for the phase space pairs (hI , p
I) are obtained by

projecting onto each basis element M I . The shift vector can be decomposed

as

ξ̄a = ξ‖k̂
a + ξ1e

a
1 + ξ2e

a
2. (3.13)
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The scalar mode equations are

ḣ1 = −p1 +
2i√

3
|k|ξ‖, (3.14)

ḣ2 = 2p2 + 2i

√
2

3
|k|ξ‖, (3.15)

ṗ1 =
1

3
|k|2h1 −

1

3
√

2
|k|2h2, (3.16)

ṗ2 = − 1

3
√

2
|k|2h1 +

1

6
|k|2h2. (3.17)

The tensor mode equations are

ḣ3 = 2p3, ṗ3 = −1

2
|k|2h3, (3.18)

ḣ4 = 2p4, ṗ4 = −1

2
|k|2h4, (3.19)

and the vector mode equations are

ḣ5 = 2p5 + i
√

2|k|ξ2, ṗ5 = 0, (3.20)

ḣ6 = 2p6 + i
√

2|k|ξ1, ṗ6 = 0. (3.21)

These equations are supplemented by the linearized diffeomorphism con-

straint which we discuss next.
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3.1.2 Diffeomorphism constraint

The position space diffeomorphism constraint Daπ̃
ab = 0 linearizes about the

flat background to ∂ap
ab = 0. In k-space this is

kap̄
ab = kap

I(k, t)Mab
I = 0

=⇒

(
1√
3
p1 +

√
2

3
p2

)
kb +

|k|√
2

(
p5 e

b
2 + p6 e

b
1

)
= 0. (3.22)

It is evident that this constraint has transverse and longitudinal components,

and furthermore, that a partial solution of this constraint must come from

setting p5 = p6 = 0, since these are the only coefficients in the transverse

directions ea1 and ea2.

More systematically, the vector modes are eliminated in three steps: (i)

imposing the gauge conditions

h5 = 0, h6 = 0, (3.23)

which are second class with the linearized diffeomorphism constraint, (ii)

solving the transverse component of the diffeomorphism constraint by setting

p5 = p6 = 0, and (iii) using the conditions that the gauge be dynamically

preserved to fix the transverse components of the shift perturbation (3.13),

ḣ5 = i
√

2|k|ξ2 = 0, (3.24)

ḣ6 = i
√

2|k|ξ1 = 0. (3.25)
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This fixes ξ1 = ξ2 = 0. The longitudinal component of the shift ξ̄a = ξ‖k̂
a

remains undetermined at this stage.

This leaves the scalar and tensor mode equations for (hI , pI), I = 1 · · · 4,

and the longitudinal part of the diffeomorphism constraint

(
1√
3
p1 +

√
2

3
p2

)
= 0. (3.26)

This remaining constraint is on the two scalar degrees of freedom. After one

more gauge fixing, the last of the three necessary to fully gauge fix the theory,

only one scalar mode and the transverse traceless graviton modes (h3, p3)

and (h4, p4) remain. The former may be chosen as either the canonical pair

(h1, p1) or (h2, p2).

Let us consider the gauge h2 = 0, and solve the remaining diffeomorphism

constraint, giving p2 = −p1/
√

2. The corresponding evolution equation gives

ḣ2 = 2p2 + 2|k|i
√

2

3
ξ‖ = 0 =⇒ ξ‖ = −i

√
3

2|k|
p1, (3.27)

and the ṗ1 and ṗ2 equations become identical. The remaining scalar mode

equations reduce, using the above expression for ξ‖, to

ḣ1 = 0, ṗ1 =
1

3
|k|2h1,

2 (3.28)

2Though the growth in p1 is linear it does not pose a problem for perturbation theory
as h1 is an infinitesimal perturbation (by assumption) which remains constant
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or equivalently,

ḧ1 = 0. (3.29)

Thus the scalar mode induced by the dust degree of freedom is ultralocal:

there are no spatial derivatives in the equation, so h1 evolves independently

at each space point. In fact it is a constant at linear order. Had we chosen

the gauge h1 = 0 (instead of h2 = 0), a similar analysis would reveal the

same equation of motion for the scalar mode h2.

Lastly we note that the graviton (TT) modes (3.18)-(3.19) satisfy the

expected light speed wave equation

ḧI = −|k|2hI , I = 3, 4, (3.30)

despite the dust time gauge fixing, which remarkably does not affect Lorentz

invariance in the linearized theory. This demonstrates that “solving the

problem of time” by adding a dust field is compatible with Lorentz invariance,

and that the dust time gauge leads to no pathologies.
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3.2 Dust potential

We note in passing that it is possible to include a potential for the dust field

in the starting theory [66]. This modifies the dust Lagrangian to

SD =

∫
d4x
√
−g [m(gµν∂µφ∂νφ+ 1)− V (φ)] , (3.31)

and the dust contribution to the Hamiltonian constraint becomes

HD =
1

2

(
p2
φ

m
√
q

+m
√
q(qab∂aφ∂bφ+ 1)

)
+
√
q V (φ). (3.32)

Now the dust time gauge canonical action (2.16) becomes

S =
1

2π

∫
dt d3x

[
πabq̇ab + pχχ̇

− (HG +
√
q V (t) +HM)−Na(CGa + CMa )

]
. (3.33)

This shows that the dust potential acts as a time dependent cosmological

constant in the dust time gauge. It has been studied in explicit cosmological

solutions in the context of mimetic gravity models and their extensions [33,

75].

The consequences of V (t) for constructing a linearized theory are interest-

ing. The first question is selecting a background solution on which to linearize

the theory. Minkowski space is no longer a solution due to the change in the

equation for the ADM momentum πab. Rather the simplest equations are
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cosmological for given V (t), and the analysis differs significantly from the flat

space linearized theory due to non-zero ADM momentum in the background

solution. We leave this for future work, but note in particular that the time

dependent potential would drastically affect the graviton mode equation by

introducing into it an explicit time dependence. This would obviously violate

Lorentz covariance, which may be recoverable in epochs where V (t) is chosen

to be very slowing varying with t.

3.3 Deformation of the Hamiltonian

So far we have described the linearized theory of canonical general relativity

in a matter time gauge, which results in the action (2.16). Taking the latter

as a starting point for defining the theory, we introduce a deformation of the

gravitational Hamiltonian

HG
α := −√qR(3) +

1
√
q

(
πabπab − απ2

)
, (3.34)

motivated by the Hořava-Lifshitz (HL) models. In their original formulation,

these models are also constructed from a first order action made from the

spatial metric and extrinsic curvature; there is no covariant second order ac-

tion as the starting point. These models also have higher derivative 3-metric

self-interactions through terms such as RabR
ab, as well as a deformation of the

ADM kinetic term. The generalization we consider however only introduces
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the latter through a parameter α:

Sα =
1

2π

∫
dt d3x

[
πabq̇ab + pχχ̇− (HG

α +HM)−Na(CGa + CMa )
]
. (3.35)

Although this generalization is motivated by HL theory, we emphasize that

it is a different theory in a key aspect. There is no Hamiltonian constraint.

Rather there is a physical Hamiltonian which now has an additional coupling

constant α. The only constraint algebra is that of the spatial diffeomorphism

constraints, which closes in the usual manner, and the physical Hamiltonian

density transforms via the bracket

{CG(N),HG
α (x), } = LNHG

α (x), (3.36)

where LN denotes the Lie derivative with respect to the vector field Na.

After linearization, we find the following equations of motion:

ḣab = 2 (pab − αδabp) + Lξδab

ṗab = −∂c∂(bha)
c +

1

2
∂c∂ch

ab +
1

2
∂a∂bh

+
1

2
δab
(
∂c∂dhcd − ∂c∂ch

)
. (3.37)

The deformation parameter α only appears in the equation of motion for

hab. Repeating the analysis above, we find after gauge fixing that the only α
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dependent equation of motion is:

ḣ1 = 3(1− 2α)p1. (3.38)

Along with the equation ṗ1 = 1
3
|k|2h1, we have

ḧ1 = (1− 2α)|k|2h1. (3.39)

These are equivalent to the position space wave equation

ḧ1 = (2α− 1) δab∂a∂bh1, (3.40)

so the propagation speed is v =
√

2α− 1. It is therefore evident that for

the GR value α = 1/2, this scalar mode is ultralocal: there are no spatial

derivatives in the equation, so h1 evolves independently at each space point.

For α > 1/2 the propagation speed varies from e.g., to superluminal (at

α = 1), whereas for α < 1/2 the equation becomes a 4d Laplacian!

3.4 Discussion

In a Hamiltonian setting with general relativity (GR) coupled to matter

fields, the matter fields are not usually used in fixing coordinate gauges.

This is because the interpretation of gravitational waves as spin 2 fields on

a background spacetime is lost with such a gauge choice. Moreover, the
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matter degrees of freedom used for gauge fixing appear as degrees of free-

dom in the geometry sector and their physical interpretation is very difficult.

We showed that it is possible to use a dust field as time (dust time gauge)

and still preserve the conventional interpretation of gravitational waves in

3+1 dimensions. Moreover, the additional degree of freedom that appears in

the metric due to this gauge fixing is ultra-local (non-propagating) and thus

causes no difficulties in physical interpretation. This chapter also demon-

strates that the choice of dust as time is compatible with standard Lorentz

covariant field theory on Minkowski (flat) spacetime and can still solve the

“problem of time“ in quantum gravity.
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Chapter 4

Mixmaster dynamics in the

dust time gauge

For the remainder of this thesis we will focus on using the dust time gauge

for classical and quantum investigations of homogeneous models. The cen-

tral aim of this thesis is an exploration of Hamiltonian cosmology in the

context of the physical time-independent Hamiltonian obtained in the dust

time gauge. Homogenous models provide a simple use case for developing

intuition about new techniques as well as for testing new ideas. We view this

to be a potentially useful step towards studying the classical and quantum

dynamics of more complex models such as the Gowdy cosmologies using a

physical time-independent Hamiltonian. These models have so far only been

studied to some extent in a volume time gauge, which introduces explicit

time dependence in the Hamiltonian and equations of motion.
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For classical general relativity, homogeneous models are specially im-

portant due to the Belinskii-Khalatnikov-Lifschitz (BKL) conjecture which

states that the approach to space-like singularities is homogeneous and vac-

uum dominated i.e., the time derivatives in the Einstein Field Equations

dominate and the dynamics at each spacetime point can be described by

a suitable vacuum homogeneous model. BKL in a series of seminal works

[16, 17, 18] argued that the Bianchi IX spacetime provides a sufficiently gen-

eral model to investigate this approach to a space-like singularity. Since

then several analytical and numerical works have validated this conjecture

[27, 21, 47, 10, 11]. For a review of recent work on Bianchi IX cosmologies

see [56, 48, 26].

The BKL conjecture introduces the possibility that the approach to the

singularity in the quantum theory, may be particularly simple if the classical

equations are indeed vacuum dominated and homogenous.1 For then the

classical singularity to be resolved is the one provided by a homogeneous

cosmology. Along this direction, we will explore some quantum aspects of

Bianchi I models in a later chapter.

The vacuum Bianchi I model is considered the “free theory” of anisotropic

cosmology, where dynamics is governed only by the gravitational kinetic term

in the Hamiltonian constraint. Its solution is the Kasner metric

ds2 = −dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2, (4.1)

1D. Garfinkle, personal communication.
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where the (real) parameters p1, p2 and p3 are integration constants satisfying

the two sum rules

p1 + p2 + p3 = 1, p2
1 + p2

2 + p2
3 = 1. (4.2)

The solution is thus characterized by one free parameter on the so-called

Kasner circle at the intersection of this plane and unit sphere.

More complicated Bianchi models have interactions between the three

scale factors arising from the Ricci curvature term in the Hamiltonian con-

straint. This is clear in the Hamiltonian formulation of Bianchi IX (or Mix-

master) Universe first studied by Misner [72, 73]. The Bianchi IX potential is

an equilateral triangular box in configuration space with exponentially high

sides. The potential vanishes in the region near the origin, so the solution

there is the (vacuum) Kasner metric. Bianchi IX dynamics is thus equivalent

to a particle in this box that undergoes collisions at the walls, and after each

collision enters a new Kasner phase:

(p1, p2, p3)→ (p′1, p
′
2, p
′
3). (4.3)

BKL derived a precise transition law for these exponents in the vacuum

case, which was subsequently re-derived by Misner in a Hamiltonian formu-

lation cited above. In the non-vacuum case it is clear that solutions are also

labelled by matter integration constants, and so it is natural to expect that

these additional constants should also participate in a generalized transition
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law and drop out in the asymptotic limit to the singularity.

In this chapter we will detail the following results from [7]:

• Bianchi IX dynamics in the dust time gauge can be formulated in terms

of a generalized transition law, akin to the BKL-Misner law, using the

matter and geometry integrations constants for dust-Bianchi I solu-

tions.

• This generalized transition law reduces to the BKL-Misner law in the

near singularity limit, thus recovering the “matter does not matter

result.”

In the next section we discuss the general formulation of spatially ho-

mogeneous spacetimes in the dust time gauge. In Section 4.2 we detail a

new Hamiltonian derivation of the dust-Bianchi I or Heckmann-Schücking

solution. In Sections 4.3 and 4.4 an analysis of dust-Bianchi IX dynamics is

given. We show that the dynamics is characterized by transitions between

dust-Bianchi I solutions and derive the corresponding transition law which

reduces to the vacuum BKL map sufficiently close to the singularity. In Sec-

tion 4.5 we add a scalar field to the model and analyze the dynamics using

the method of consistent potentials. We conclude the chapter with Section

4.6 with a summary of our results and some remarks.
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4.1 The spatially homogeneous sector

In the dust time gauge we equate the surfaces of homogeneity with level sur-

faces of the dust field. The general four dimensional spatially homogeneous

metric can then be written as:

ds2 = −dt2 + qij(t)ω
iωj (4.4)

where ωi are invariant 1-forms corresponding to the three dimensional isome-

try group of the manifold and N i = 0. In the absence of matter fields besides

the dust, the physical Hamiltonian in the dust time gauge for a spatially ho-

mogeneous background is

Hp = − 1

2π

∫
d3xHG. (4.5)

When qij(t) is diagonal, a parametrization of the ADM canonical variables is

qij = diag[e2α1(t), e2α2(t), e2α3(t)],

πij =
1

2
diag[π1(t)e−2α1(t), π2(t)e−2α2(t), π3(t)e−2α3(t)], (4.6)
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so the canonically conjugate pairs are (αi, πi), i = 1, 2, 3. The physical

Hamiltonian then takes the form

Hp = v0

[
− 1

4
√
q

(
1

2

∑
i

π2
i −

∑
i<j

πiπj

)
+ V (α)

]
≡ HK + V, (4.7)

where V (α) is derived from the scalar curvature of the spatial slice,
√
q =

exp
(∑3

i=1 αi
)
, and v0 is a fiducial volume we set to unity.

An alternative set of phase space variables, obtained from the above by

canonical transformation, are the Misner variables (Ω, β+, β−), and their con-

jugate momenta. The physical Hamiltonian in these variables is

Hp =

[
−e

3Ω

24

(
p2

+ + p2
− − p2

Ω

)
+ V (Ω, β+, β−)

]
. (4.8)

We consider here the diagonal Bianchi I and IX spacetimes, for which the

potentials V (Ω, β+, β−) are

VI = 0 (4.9)

VIX = −6e−Ω

[[2

3
e4β+

(
cosh

(
4
√

3β−

)
− 1
)
− 4

3
e−2β+ cosh

(
2
√

3β−

)
+

1

3
e−8β+

]]
,

≡ −6e−Ω v(β+, β−). (4.10)

We make use of both sets of variables, the first to give a derivation of

the dust-Bianchi I solution, and the second to study Bianchi IX dynamics.
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In either parametrization, since Hp is a constant of the motion, the energy

density of the dust m = Hp/
√
q diverges as the metric determinant goes to

zero. Thus,
√
q → 0 corresponds to a physical singularity.

4.2 Dust-Bianchi I spacetime

The isometry group of the Bianchi I model is the three parameter group of

translations in three dimensional Euclidean space. In the synchronous basis

the metric is

ds2 = −dt2 + e2α1(t)dx2 + e2α2(t)dy2 + e2α3(t)dz2. (4.11)

The Kasner metric is the vacuum solution of this form. We now derive a

metric of the same form with dust, in the dust time gauge. As we will see,

this will turn out to be the Heckmann and Schücking solution [55].

The physical Hamiltonian for this model is given by (4.7) with V (α) = 0.

The Hamilton equations of motion are

α̇1 = − 1
√
q

(π1 − π2 − π3) , {with cyclic perm. on πi for α̇2 and α̇3}

π̇i = HK . (4.12)

The second equation gives

πi(t) = HKt+ λi (4.13)
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with integration constants λi.

4.2.1 Kasner solution: HK = 0

In this case the above evolution equations imply

(
√
q ) ˙ =

1

4
(π1 + π2 + π3) =

Λ

4
. (4.14)

and

α̇i =
Λ− 2λi
Λt+ 4δ

, Λ =
∑
i

λi. (4.15)

Here, Λ =
∑3

i=1 λi and δ ≥ 0 is an integration constant. This gives the

following solution for the scale factors ai = eαi :

ai = ξi

(
t+

4δ

Λ

)1− 2λi
Λ

, (4.16)

where ξi are constants of integration. The scale factors are not all indepen-

dent, since they satisfy

√
q = a1a2a3 =

Λt

4
+ δ, (4.17)

which is derived from (4.14), and δ =
√
q(0).

Defining the exponents

pi ≡ 1− 2λi
Λ
, (4.18)

we see that p1 + p2 + p3 = 1, as for the Kasner solution. Furthermore, sub-
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stituting the solution (4.13) into the physical Hamiltonian HK , and setting

HK = 0, yields

λ2
1 + λ2

2 + λ2
3 = 2(λ1λ2 + λ1λ3 + λ2λ3),

=⇒ p2
1 + p2

2 + p2
3 = 1, (4.19)

using the definition (4.18). Lastly, we can absorb the integration constants ξi

in the coordinates, and redefine t→ t+ 4δ/Λ to recover the Kasner solution.

Therefore, the dust time gauge, with initial data chosen such that HK = 0,

gives the vacuum Kasner solution – an unsurprising result since the dust

energy density m vanishes for this case. We now turn to the HK = constant

6= 0 cases.

4.2.2 Dust-Kasner solution: HK > 0

For HK 6= 0 we can invert the expression for the Hamiltonian to obtain an

expression for
√
q,

√
q =

1

8

(
3HKt

2 + 2Λt+ 8δ
)
. (4.20)

This gives

α̇i =
6HK (HKt+ Λ− 2λi)

(3HK t+ Λ)2 + 24HKδ − Λ2
(4.21)

HK > 0 requires

Λ2

2
> λ2

1 + λ2
2 + λ2

3, (4.22)
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while the term 24HKδ − Λ2 is proportional to

Λ2

3
− (λ2

1 + λ2
2 + λ2

3). (4.23)

Therefore, for HK > 0, there are two classes of solutions, with initial data

satisfying either

Λ2

2
> λ2

1 + λ2
2 + λ2

3 >
Λ2

3
, (4.24)

or

Λ2

3
> λ2

1 + λ2
2 + λ2

3. (4.25)

At the end of this section we’ll show that the second class of solutions is not

physically viable.

If (4.24) is satisfied, then (4.21) can be integrated to give

ai = ξi (y − Γ)
1
3

+βi (y + Γ)
1
3
−βi , (4.26)

where y = 3HKt+ Λ,

Γ2 = −24HKδ + Λ2, βi =
2

3Γ
(Λ− 3λi) (4.27)

and ξi are integration constants satisfying ξ1ξ2ξ3 = −1/(24HK). This is the

Heckmann-Schücking solution

ai = ξi τ
pi (τ + 2Γ)

2
3
−pi , (4.28)
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as can be seen by defining

pi =
1

3
+ βi, τ = 3HKt+ Λ− Γ, (4.29)

Interestingly, even for HK 6= 0, the exponents pi again satisfy

p1 + p2 + p3 = 1, p2
1 + p2

2 + p2
3 = 1. (4.30)

Addressing now the second set of data (4.25), it is convenient to define

Γ2 ≡ 24HKδ − Λ2. Then the solution of (4.21)

ai = ξi
(
y2 + Γ2

) 2
3 exp

[
4Bi arctan

( y
Γ

) ]
, (4.31)

where Bi = (Λ/3− λi)/Γ. Now
∑

iB
2
i < 0, implying that at least one of the

Bi is imaginary and the solutions are not physical.

4.2.3 Dust-Kasner solution for HK < 0

For completeness, we also present solutions with HK < 0. These solutions

are not physically relevant since they correspond to a negative energy density

for the dust. When HK < 0 we have

Λ2

3
<

Λ2

2
< λ2

1 + λ2 + λ2
3. (4.32)
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This implies that 24HKδ − Λ2 < 0. Up to this change, the solution solution

has the same form

ai = ξi τ
pi (τ + 2Γ)

2
3
−pi (4.33)

where τ and the exponents pi are defined as before.

4.2.4 Dust-Bianchi I spacetime with scalar field

In the presence of a free scalar field χ the physical Hamiltonian in the dust

time gauge is

Hp = HK −
p2
χ

2
√
q
. (4.34)

The equations of motion for the scale factor remain the same as in (4.12).

However equations for the momenta are now

πi = Hp, (4.35)

and those for the scalar field are

χ̇ = −e−
∑
i αipχ, ṗχ = 0 (4.36)

Consequently

πi = Hpt+ λi. (4.37)
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The solution for πi substituted into the expression for the physical Hamilto-

nian Hp gives

√
q =

1

8

(
3Hpt

2 + 2Λt+ 8δ
)
, (4.38)

where now

δ ≡
√
q(0) = − 1

4Hp

(
1

2

∑
i

λ2
i −

∑
i<j

λiλj + 2p2
χ

)
. (4.39)

The solution for the scale factors is

ai = ηi (τ)
1
3

+βi (τ + 2Γ)
1
3
−βi (4.40)

where

τ ≡ 3Hpt+ λ− Γ, Γ2 = −24Hpδ + Λ2, βi =
2

3Γ
(Λ− 3λi) . (4.41)

(The definition of Γ now uses Hp rather than HK for the pure dust case).

Defining the exponents

pi ≡
1

3
+ βi, (4.42)

now gives
3∑
i=1

pi = 1,
3∑
i=1

p2
i = 1−

8p2
χ

Γ2
. (4.43)

The second sum rule depends on the value of the conserved scalar field mo-

mentum and the integrations constants λi. This has the correct limits for
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pχ = 0 (dust only), and for Hp = 0 (vacuum).

Substituting for the scale factors in the equation of motion for χ we have

χ̇ =
8 pχ

τ(τ + 2Γ)
, (4.44)

Since pχ = const, this can be integrated to give

χ =
8 pχ
2 Γ

ln

[
τ

τ + 2Γ

]
. (4.45)

4.3 Dust-Bianchi IX spacetime

The Bianchi IX dynamics is most easily studied from the Hamiltonian per-

spective using Misner variables. The physical Hamiltonian is (4.8) with the

non-zero potential in (4.9). The metric is

ds2 = −dt2 + e−2Ω
(
e2β
)
ij
ωiωj (4.46)

where ωi are SO(3) covariant 1-forms and

βij = diag(β+ +
√

3β−, β+ −
√

3β−,−2β+). (4.47)
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Figure 4.1: Contours of v(β+, β−) for the potential VIX = e−Ωv(β+, β−). v
is bounded above by +1, the bold line is the v = 0 contour, the innermost
contour is v = 0.75 and the outermost contour is v = −100.

The canonical equations of motion are

Ω̇ =
exp(3Ω)

12
pΩ, ṗΩ = −3Hp − 24e−Ωv(β+, β−) (4.48)

β̇± = −exp(3Ω)

12
p±, ṗ± = 6e−Ω ∂v

∂β±
. (4.49)

The difference between these equations and the vacuum case studied by

Misner is that with the dust there are three physical configuration degrees

of freedom. Since the dust is used to fix the time gauge, all three degrees of

freedom are manifested in the spatial metric, and the potential is a function

of all three. Moreover, even though Ω appears only in the overall factor, it

still has non-trivial dynamics in dust time.
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Figure 4.2: Numerical integration of the equations of motion for different
values of Hp show that oscillatory behaviour of the scale factors a(t) (solid
red line), b(t) (dashed green line) and c(t) (dotted blue line).

The volume of the universe scales as e−3Ω, therefore the singularity is

approached as Ω tends to infinity. Thus near the singularity the potential

VIX (4.9) only plays a role when |v(β+, β−)| is sufficiently large. When the

potential term is not dominant, the universe behaves like the dust-Bianchi I

system studied in the last section. Therefore, Misner’s picture of a particle

in a time dependent triangular box can be interchanged with the particle

inside a pyramidal well in configuration space depicted in Fig. 4.1.

Projected on the (β+, β−) plane, the contours of v(β+, β−) scale linearly

with Ω. As Ω increases, the contours move outwards. This can be seen by

considering one section of the potential, say V = −2e−Ω−8β+ for β+ < 0:

setting −2e−Ω−8β+ = −C corresponds to contour section given by −8β+ =

ln
(
C
2

)
+Ω. The particle velocity in the (β+, β−) plane, ~v = (β̇+, β̇−), scales as

e3Ω (from the above equations), while the contours have a linear dependence

on Ω. It is therefore reasonable to assume that the particle bounces off the
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exponential walls of the pyramidal potential, and that these bounces are

interspersed by durations in which the dynamics is kinetic term dominated

and described by the dust-Bianchi I solution. A key difference between the

dust time dynamics in the present case, and Ω time in the standard (no

dust) case, is that the singularity is reached in finite dust time. Indeed for

Hp > 0 i.e., the energy density of the dust is positive, the dust filled Bianchi

IX universe has two physical singularities as shown in Fig. 4.2; this is an

example of a more general result [67]. Fig. 4.2 also demonstrates that Bianchi

IX dynamics in dust time gives oscillatory dynamics, just as for volume time

in the vacuum case.

We note that as the universe expands, Ω and |~v| = |(β̇+, β̇−)| ≈ e3Ω de-

crease, and the potential walls move inwards. Therefore the dust-Bianchi I

phases last for shorter periods of dust-time. However, since Ω is bounded

below (the point of maximum expansion), when the universe begins to recon-

tract, the potential walls start to move outwards again, and the frequency of

collisions decreases. This observation, which holds for all dust-time, will be

important in interpreting the generalized transition law we drive below.

4.3.1 Method of Consistent Potentials

One way to establish that the Universe particle undergoes bounces at the

moving walls of the potential (as the singularity is approached) is a self-

consistent analysis called the Method of Consistent Potentials (MCP) [51].

The basic idea is to obtain a solution by neglecting the potential terms in
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the Hamiltonian, ie. a Bianchi I solution, and substitute this solution into

the full Hamiltonian, ie. with the potential terms included. If the dynamics

is asymptotically velocity dominated, the neglected potential terms remain

exponentially suppressed i.e., the Bianchi I phase dominates. On the other

hand, if one or more of the potential terms grow as the singularity is ap-

proached, the Universe may undergo a bounce to a new Bianchi I phase.

To apply MCP in our case we observe that the physical Hamiltonian for

a dust-Bianchi IX spacetime is the sum of two terms HK and HV where

HK = −e
3Ω

24

(
p2

+ + p2
− − p2

Ω

)
(4.50)

HV = −6e−Ω
(2

3
e4β+

(
cosh

(
4
√

3β−

)
− 1
)

(4.51)

−4

3
e−2β+ cosh

(
2
√

3β−

)
+

1

3
e−8β+

)
.

Near the singularity, Ω → ∞, so we use the dust-Kasner equations to find

β±(Ω) and substitute these into the potential. For large Ω the Hamilton

equations give

∂β±
∂Ω

= ∓
p0
±

|Γ|

(
1− 24He−3Ω

Γ2

)−1/2

≈ ∓
p0
±

|Γ|

(
1 +

12He−3Ω

Γ2

)
, (4.52)

where H is the value of the dust-Kasner hamiltonian and Γ, p0
± are integration

constants related by p0
+ = Γ cos θ, p0

− = Γ sin θ, a result which follows from
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the pΩ equation. Thus to linear order we have

β± = −∓
p0
±

Γ
Ω + β0

±. (4.53)

Near the singularity the dominant terms in HV are

HV ≈ 2e−Ω
(
e−8β+ + e4β++4

√
3β− + e4β+−4

√
3β−
)
, (4.54)

which for later convenience we label V1, V2 and V3 respectively. Substituting

the asymptotic form of β± gives

HV ≈ 2
(
eΩ(±4 sin θ±4

√
3 cos θ−1) + eΩ(±4 sin θ∓4

√
3 cos θ−1) + eΩ(∓8 sin θ−1)

)
. (4.55)

If all the terms above are to be negligible, we require the following equations

to be satisfied simultaneously

4 sin θ + 4
√

3 cos θ − 1 < 0

4 sin θ − 4
√

3 cos θ − 1 < 0

−8 sin θ − 1 < 0. (4.56)

It is clear from Fig.4.3 that these three conditions cannot be satisfied

simultaneously and at least one of the terms is growing at any given time.

Thus the particle is approaching one section of the walls of the pyramidal box

at any given time. Therefore the dynamics of the dust-Bianchi IX near the
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Figure 4.3: This is a plot of the expressions on the left hand side of (4.56)
with respect to θ. The solid line indicates the first condition, the dashed
line indicates the second condition and the dotted line indicates the last
condition. It is clear from the plot above that the inequalities in (4.56)
cannot be simultaneously satisfied. Moreover, for any value of θ only one of
the terms in the potential is dominant.

singularity is characterized by periods in which HV is negligible compared

to HK , and the dynamics resembles that of the dust-Bianchi I model (dust-

Kasner phase). These periods are punctuated by periods in which one of

the terms in (4.55) is large enough that HV cannot be neglected causing a

“bounce” from one dust-Bianchi I solution to another.

Thus, unlike vacuum Bianchi IX, the dust-Bianchi IX universe bounces

between Bianchi I solutions that are not vacuum Kasner. In BKL’s language,

the dynamics of dust-Bianchi IX is characterised by oscillations between dust-

Bianchi I regimes. This gives a new physical picture of the approach to the

singularity in the dust time gauge.
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4.4 Transitions between dust-Bianchi I epochs

We have established that dust doesn’t change the oscillatory nature of the

Bianchi IX dynamics near the singularity. The dynamics can still be viewed

as that of a particle bouncing in a steep triangular potential well, with dust-

Kasner regimes between bounces. We would now like to quantify this oscil-

latory behaviour.

The cornerstone of BKL’s analysis of Bianchi IX dynamics is the transi-

tion rule governing transitions between various Kasner epochs. In the same

spirit we derive a rule that relates the pre- and post-bounce dust-Bianchi I

solutions, when these bounces occur away from the corners of the potential.

The method of consistent potentials shows that the three dominant terms in

the potential peak at different times. Let us consider first the potential term

V1 = −2e−Ω−8β+ (4.57)

which is (a section of) one of the walls of the triangular potential. The

truncated Hamiltonian for this wall is then

H1 ≡ HK + V1. (4.58)

It is evident that p− is conserved since the poisson bracket {p−, H1} = 0.
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Therefore its change at this potential wall is zero:

∆p− = 0. (4.59)

However the momentum p+ (which is conserved for dust-Bianchi I) undergoes

a change upon collision. To find this change let us consider the equations of

motion in dust-time:

ṗΩ = −3H1 + 4 V1 (Ω, β+, β−) (4.60)

ṗ+ = 8 V1 (Ω, β+, β−) . (4.61)

These imply

pΩ −
1

2
p+ = −3H1t+ α, (4.62)

where α is an integration constant for the Bianchi IX universe near the

section of the potential characterized by V1. Now recalling that p+ and p−

are (approximate) conserved quantities away from the potential wall (where

HK � V1), the Universe returns to this region with a different value of p+

after a bounce at the wall. Therefore the dust-Bianchi I regimes before and

after collision at the wall VIX ≈ V1 are all characterized by the following

condition on the integration constants (ie. the last equation evaluated at

t = 0):

p0
Ω −

1

2
p0

+ = α. (4.63)

Now since α is a dust-Bianchi IX integration constant for this wall, we have
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the relation

∆p0
Ω −

1

2
∆p0

+ = 0, (4.64)

which gives the initial data change for the dust-Kasner phase after collision

with V1. This equation is central to our analysis below.

4.4.1 Transition Law: Hp = 0

This is the vacuum case. The following steps give an elegant derivation of

the BKL law, which demonstrates the utility of the dust time gauge. Away

from the potential wall we have Hp ≈ HK = 0, therefore

p2
+ + p2

− − p2
Ω = 0. (4.65)

This suggests the parameterization cos θ ≡ p+/pΩ and sin θ ≡ p−/pΩ. Since

θ undergoes a change at a wall, let us denote its values before and af-

ter the bounce respectively as (p+/pΩ)(i) = cos θi, (p−/pΩ)(i) = sin θi, and

(p+/pΩ)(f) = − cos θf , (p−/pΩ)(f) = sin θf . (θ provides an abstract parametriza-

tion and in general we cannot interpret it as the angle of incidence or deflec-

tion in the (β+, β−) plane.)

The conservation of p− at the wall V1 gives

p
(i)
Ω sin θi = p

(f)
Ω sin θf , (4.66)
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and (4.64) gives

p
(i)
Ω

(
1− 1

2
cos θi

)
= p

(f)
Ω

(
1 +

1

2
cos θf

)
. (4.67)

Combining these equations gives

sin θf − sin θi =
1

2
sin(θi + θf ). (4.68)

This rule can be cast in terms of one parameter u. Since pΩ is a constant

when Hp ≈ HK = 0, following Misner [73] we choose the parametrization

p+

pΩ

= cos θ =
u2 + u− 1/2

u2 + u+ 1
,

p−
pΩ

= sin θ =

√
3(u+ 1/2)

u2 + u+ 1
. (4.69)

Then the transition law (4.68) becomes uf = (ui − 1)/3.

4.4.2 Transition Law: Hp 6= 0

This is the case that gives one of our new results. It differs from the previous

(Hp = 0) case in two respects. First, in contrast to (4.65), the dust-Kasner

physical Hamiltonian (4.50) now gives

p2
+ + p2

− = (p0
Ω)2 − 24Hpδ = Γ2, (4.70)

where δ = e−3Ω(0) is the initial volume of the dust-Bianchi I solution and Γ is

defined in Section 4.2.2. It is important to remember that though the dust-
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Kasner solution involves six integration constants, the dust-Kasner phase is

completely characterized by three integration constants as three constants

can be absorbed in redefinitions of the spatial coordinates. Thus a collision

with Bianchi IX wall V1 induces the shift:

(p0
Ω, p+, δ) −→ (p0 ′

Ω , p′+, δ
′). (4.71)

Importantly, the shift in δ is now relevant since Hp 6= 0. Its role is critical

for extracting the matter independence of the near singularity transition law

we derive below.

Secondly, in the kinetic term dominated region (i.e., H1 ≈ HK), pΩ is not a

constant but depends linearly on t. Thus 1
2
p+−pΩ 6= const. Nevertheless from

(4.63) we still have (4.64) as the relation between the integration constants

for dust-Bianchi I before and after the bounce at V1, since this condition was

derived from the full Bianchi IX equations at wall V1.

Given (4.70), we define the modified parametrization, before (i) and after

(f) the collision, by

(p+

Γ

)(i)

= cos θi,
(p−

Γ

)(i)

= sin θi,(p+

Γ

)(f)

= − cos θf ,
(p−

Γ

)(f)

= sin θf (4.72)

Then the conservation of p− at the bounce gives, as before,

Γ(i) sin θi = Γ(f) sin θf . (4.73)
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Note, θ is a redundant parameter introduced for convenience and the shift in

θ is determined by the shift in Γ which in turn is governed by the shift in p0
Ω

and δ. Now the condition 1
2
∆p0

+ = ∆p0
Ω, combined with the last equation,

gives (
p0

Ω

Γ

)(i)

sin θf −
(
p0

Ω

Γ

)(f)

sin θi =
1

2
sin(θi + θf ). (4.74)

We note that if Hp = 0 (ie. no dust) this reduces to the BKL-Misner rule.

However, as it stands the transition rule is not complete since we have so far

not given a prescription for how δ changes. The shift in δ can be obtained

by using the dust-Kasner energy conservation, which for the wall V1 gives

−∆(p2
+) + ∆(p2

Ω) = 24Hp∆δ. (4.75)

Equation (4.74) supplemented by (4.75) is one of our main results.

We contend that the transition rule derived above, (4.74) and (4.75),

also applies away from the singularity. This is because the only input in

its derivation is collision at this wall, regardless of the size of the Universe.

Indeed, the universe undergoes bounces between dust-Kasner regimes for all

dust-time (unlike volume time which is not monotonic), though the bounce

frequency decreases as the singularity is approached; in the latter regime, the

universe spends longer periods of dust-time in each dust-Kasner phase, but

still bounces to a different phase when the potential term in the Hamiltonian

becomes dominant. This fact is evident in numerical simulations in dust-

time.
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We now show how these equations yield the vacuum BKL-Misner rule.

Matter does not matter: δ transition law

As it stands (4.74) raises the question of compatibility with results from other

approaches which establish that the transition rule is matter independent.

We now show that sufficiently close to a singularity, the transition rule is such

that δ → 0. Therefore Γ → pΩ, and our new law reduces to BKL-Misner

rule. We demonstrate this for both the initial and final singularity. As a

byproduct, we see that our law is the first generalization to include matter,

via a matter time gauge, in the intermediate region where “matter begins to

matter.”

To establish this let us note the following: the transition law (dust-

Kasner)(i) → (dust-Kasner)(f) at any wall is governed by the dust-Kasner

energy conservation equation

−∆(p2
+)−∆(p2

−) + ∆(p2
Ω) = 24Hp∆δ, (4.76)

since the total energy Hp of the Bianchi IX solution does not change. Now

the change in p+ and p− is bounded since ṗ± can be positive or negative at

different walls. Therefore close to a singularity, the sign of ∆δ is completely

determined by ∆(p2
Ω).

We now establish that ∆δ > 0 during the expansion phase and ∆δ < 0

during the contraction phase. This is sufficient to show that (4.74) reduces
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to the vacuum rule sufficiently close to a singularity. We do this by showing

that ∆(p2
Ω) accumulates in one direction.

Let us first note that the dust-Kasner evolution implies

Ω̇I < 0, p̈IΩ = 0. (4.77)

Since the sign of Ω̇ is determined by the sign of pΩ, we have pΩ < 0 for

dust-Kasner evolution. During the expansion phase Ω̇I and Ω̇IX have the

same sign (−ve), and near the singularity in regions where the potential is

significant, (4.49) gives

ṗIXΩ � ṗIΩ < 0. (4.78)

Thus, after a bounce from the wall V1, ṗIXΩ decreases more than it would due

to dust-Kasner evolution alone. This extra decrease implies that the shift

in the dust-Kasner parameter p0
Ω is negative i.e., ∆p0

Ω < 0. Moreover, as

the singularity is approached, the inequality in (4.78) grows and so does the

magnitude of the shift. Since the inequality in (4.77) always holds, if the

initial conditions for the initial dust-Kasner phase are set such that δi = 0,

then p0 i
Ω < 0. (This choice of initial conditions is always possible by shifting

the dust time origin by t0 = (Γi − Λi)/3Hp.)

Thus, ∆(p0
Ω)2 > 0 and increases with each successive bounce, while ∆p2

±

remains bounded. Therefore, ∆δ > 0 in the expanding phase. A similar

argument leads to the conclusion that ∆δ < 0 in the contracting phase.

Coupled with the fact that the inequality (4.78) grows as the singularity is
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approached this implies that the change in δ is not only negative but also

accelerating in the negative direction. Therefore, as either the past or future

singularity is approached in dust times, δ (which is ≥ 0) asymptotes to 0 and

we have

Γ→ pΩ. (4.79)

Thus, our transition law (4.74) reduces to the matter-independent BKL-

Misner rule.

We note that in Misner variables the transition rules at the other walls

(V2 & V3) will in general be different from the law derived above. This is

because though the quantity conserved at these walls can be obtained by

suitably rotating (4.59), it is not possible to obtain the analog of (4.64) in

a similar fashion. Therefore, the transition law at the other walls cannot be

easily transformed into the law derived above. However, since the kinetic

and potential terms in the Hamiltonian are invariant under rotations of 2π
3

,

these transformations exist and are obvious in the terms of the scale factor

variables.

Lastly, we can recover the dust-Kasner scale factors before and after a

bounce by noting that the integration constants appearing in the transition

rule are related to dust-Kasner exponents by

p1 =
1

3
(1−cos θ−

√
3 sin θ), p2 =

1

3
(1−cos θ+

√
3 sin θ), p3 =

1

3
(1+2 cos θ).

(4.80)
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4.5 Bianchi IX dynamics with dust and scalar

field

It is known that a scalar field suppresses the oscillations between Kasner

regimes that characterize the mixmaster dynamics of a generic approach to a

singularity. Berger [25] first used MCP to clarify the role of the scalar field.

In this section we apply this technique to investigate the near singularity

dynamics of a Bianchi IX universe filled with dust and a homogeneous scalar

field. In the dust time gauge, the physical Hamiltonian for a Bianchi IX

spacetime with dust and a homogeneous scalar field χ is

Hp = −e
3Ω

24

(
p2

+ + p2
− − p2

Ω + 12 p2
χ

)
+ VIX(Ω, β+, β−)− e−3ΩVχ(χ), (4.81)

where pχ denotes the momentum conjugate to the scalar field and Vχ(χ)

is the scalar field potential. As in the last section, we can again view the

Hamiltonian as a sum of two terms HK and HV where

HK = −e
3Ω

24

(
p2

+ + p2
− − p2

Ω + 12 p2
χ

)
(4.82)

HV = VIX(Ω, β+, β−)− e−3ΩVχ(χ). (4.83)

To apply MCP we are interested in the solutions with the free Hamiltonian

HK . The equations of motion are the set (4.49) with v = 0. We note also
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that from (4.82)

p2
+ + p2

− + 12p2
χ = constant ≡ L. (4.84)

Therefore, we can parameterize p± as

p+ = k
√
L sin θ, p− = k

√
L cos θ, (4.85)

with

k =

√
1−

12 p2
χ

c
. (4.86)

Using the asymptotic expansions for β± in HV , near the singularity we have

HV ≈ 2
(
eΩ(±4k sin θ±4

√
3k cos θ−1) + eΩ(±4k sin θ∓4

√
3k cos θ−1) + eΩ(∓8k sin θ−1)

)
.

(4.87)

None of the terms in HV are significant if the following inequalities are sat-

isfied simultaneously

±4k sin θ ± 4
√

3k cos θ − 1 < 0

±4k sin θ ∓ 4
√

3k cos θ − 1 < 0

∓8k sin θ − 1 < 0. (4.88)

All three inequalities are satisfied for k < 1/4. Thus, in the presence of a

scalar field the oscillatory dynamics of the dust filled Bianchi IX model is
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Figure 4.4: This is a plot of the expressions on the left hand side of (4.88)
with respect to θ for a value of k < 0.25. The solid line indicates the first
condition, the dashed line indicates the second condition and the dotted line
indicates the last condition. The gray regions indicate θ values for which
all the terms in the potential are decaying. As the value of k decreases this
region grows larger.

suppressed when the scalar field momentum satisfies

4

5
p2
χ > p2

+ + p2
−. (4.89)

Given the dynamics for the anisotropy momenta, the above equation will

necessarily be satisfied in the asymptotic limit.
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4.6 Discussion

This chapter presented the Bianchi I and IX cosmologies with dust in the

Hamiltonian theory in the dust time gauge. We first gave a new derivation

of the Heckmann-Schücking solution (dust-Kasner) in the dust time gauge,

and used this to study the Bianchi IX dynamics. We showed this approach

gives a new physical picture of Bianchi IX evolution, as a series of dust-Kasner

epochs between bounces from the anisotropy potential walls. We then derived

the transition law for these dust-Kasner epochs. This law differs significantly

in detail from the vacuum case derived by BKL and Misner, and its form is

different at each of the potential walls.

In the dust time gauge it is not possible to separate the dust degrees

of freedom from the gravitational degrees of freedom, since the extra de-

gree of freedom is manifested in the metric, and matter is “locked in” with

time. Therefore it is not surprising that the transition between different

dust-Kasner regimes is governed by more than one parameter.

This leads to a puzzle: how does the “matter does not matter” result arise

in a context where evolution is defined with respect to matter time (dust in

our case)? To answer this we showed that the transition rule we derived

reduces to the vacuum BKL-Misner law sufficiently close to a singularity.

We emphasize that our analysis in deriving the generalized transition law

makes no assumption about the size of the Universe. Rather, it relies only on

the fact that collisions with walls occur throughout evolution in dust time.
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As such it may be interpreted as simply a “wall collision law.”

In the following chapters we will explore the quantum dynamics of the

FLRW and Bianchi I models in the dust time gauge.
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Chapter 5

The Universe as an Oscillator

In this chapter we will explore the reduced phase space quantization of a spa-

tially flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) model with dust

and a cosmological constant. This remains the typical model to consider since

current observations suggest that our Universe is modelled by an FLRW cos-

mology with nearly zero spatial curvature and a very small positive cosmo-

logical constant (Λ ∼ 3×10−22l−2
p ). In the reduced phase space quantization

approach with the dust time gauge, the quantum theory is completely solv-

able and the model exhibits the key feature of singularity avoidance that is

expected from more complex quantum gravity models [6].

A surprising consequence of using the dust time gauge is that in the

Arnowitt-Deser-Misner (ADM) formalism the physical Hamiltonian, after a

canonical transformation, is exactly that of the simple harmonic oscillator

with the oscillator frequency determined by
√

Λ. The quantum theory is
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therefore immediate.

For Λ < 0 the potential is that of the usual oscillator, whereas for Λ > 0

it is the inverted oscillator. The former case describes Universes either as

stationary states, or as wave packets that expand and contract ad-infinitum.

The latter case has only scattering solutions that give Universes with a single

bounce. Depending on the choice of canonical parametrization, the oscillator

is either on the half or the full line. All cases gives singularity avoidance,

and for all choices of self-adjoint extensions of the Hamiltonian. This model

also exhibits one of the situations where Dirac and reduced phase space

quantization give similar results for a particular choice of operator ordering

in the Wheeler-DeWitt equation.

Section 5.1 details the model and the canonical transformation that maps

its dynamics on to an oscillator. In Section 5.2 we discuss the quantum

theory of the model and in Section 5.3 we provide a summary of our results

and discuss their relevance.

5.1 The Homogeneous and Isotropic Sector

Let us consider the reduction of the dust-time gauge theory to the homo-

geneous and isotropic cosmology. The general homogeneous and isotropic

metric in the dust time gauge can be written as:

ds2 = −dt2 + qijw
iwj, (5.1)
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where wi are invariant 1-forms corresponding to the isometry group of the

spatial 3-manifold and the spatial metric is given by

qij = a2(t)eij

with eij = diag(1, 1, 1) the fiducial flat metric. The momentum conjugate to

this spatial metric is

πij =
pa(t)

6a(t)
eij, (5.2)

The reduced phase space coordinates are (a, pa), and we take a ∈ (0,∞)

and pa ∈ R as the definition of this parametrization (since we must have

det(qij) = a3 > 0).

The physical Hamiltonian in the dust time gauge for the case of flat

spatial hypersurfaces then becomes

Hp =
p2
a

24a
− Λa3. (5.3)

To briefly recap, this FRW model started with a four-dimensional phase

space, that of the dust field and the scale factor. After fixing the time gauge

and solving the Hamiltonian constraint, the reduced phase space becomes

two-dimensional, with canonical coordinates (a, pa). This is unlike the vac-

uum deSitter model (see e.g.[52] ), which actually has no physical degrees of

freedom; the physical meaning of “wave functions of the Universe” without

additional degrees of freedom is therefore unclear.
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The canonical transformation

p =
pa√
12a

, x =
4√
3
a3/2 (5.4)

and the rescaling Λ −→ 4Λ/
√

3 transforms the Hamiltonian to

Hp =
1

2

(
p2 − Λx2

)
. (5.5)

There are thus three cases of interest: Λ = 0 is a free particle, Λ < 0 is the

oscillator and Λ > 0 is the inverted oscillator.

5.2 Quantization and wave functions of the

Universe

This section consists of two parts where we describe quantization in the dust

time gauge for two choices of the configuration space. These lead to quantum

theories on either the half-line or the full line. In the former case there is a

one parameter family of self-adjoint extensions of the physical Hamiltonian.

5.2.1 Quantization on the half-line

The classical theory is on the half-line, x ∈ (0,∞), so the obvious choice for

the Hilbert space is L2(R+, dx). In this space it is known that Hamiltonians

of the form p2 + V (x) have self-adjoint extensions. Specifically, it is readily
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checked that the physical Hamiltonian (5.5) is symmetric in the usual rep-

resentation p̂ → −i∂x, i.e. that (ψ, Ĥpφ) = (Ĥpψ, φ), provided lim
x→∞

φ = 0

and

lim
x→0

[ψ∗φ′ − φψ∗′] = 0. (5.6)

This gives the boundary condition φ′(0) = αφ(0), α ∈ R. Thus there is a

one-parameter (α) family of self-adjoint extensions of Ĥp on the half-line, so

the Hilbert space is the subspace specified by

Hα =
{
φ ∈ L2(R+, dx)

∣∣∣ lim
x→0

(lnφ)′ = α ∈ R
}
. (5.7)

We are interested in solving the time-dependent Schödinger equation,

i
∂

∂t
φ(x, t) = −1

2

∂2

∂x2
φ(x, t)− 1

2
Λx2φ(x, t), (5.8)

with the boundary condition mentioned above. (In this equation all variables

are dimensionless, or equivalently, written in Planck units.)

Λ = 0: There are two types of elementary solutions. The first are the ingoing

and outgoing waves of fixed energy (in the dust time gauge), and satisfying

the above boundary condition,

φαk(x, t) = e−ik
2t/2

[
eikx −

(
α− ik
α + ik

)
e−ikx

]
(5.9)
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Normalizable wave functions are constructed in the usual manner as

ψα(x, t) =

∫ ∞
−∞

dk f(k)φαk(x, t) (5.10)

All such solutions describe Universes with singularity avoidance and a bounce

at the origin with a phase shift given by α. Here singularity avoidance refers

to the fact that the quantum equations of motion remain well defined even

when x = 0. This does not imply that the curvature invariants remain

bounded as x −→ 0 as in LQC models where singularity avoidance is ob-

served.

The second type of solution is a bound state,

φ(x, t) = eiκ
2t/2 e−κx, κ > 0 (5.11)

This corresponds to α = −κ, a choice permitted by the boundary conditions.

The Universe this describes is ruled out by experiment, since 〈a3/2〉 ∼ 〈x〉 =

(2κ)−1 which has the interpretation of an emergent flat spacetime from the

expectation value of the metric.

Λ < 0: This is the oscillator on the half-line with the boundary condition,

ψ′(0) − αψ(0) = 0. With Λ = −1/l2 and ζ = t/l, the propagator on R is a
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basic result,

K(x, ζ;x′, 0) =

√
1

2πil sin ζ

× exp

{
i[(x2 + x′2) cos ζ − 2xx′]

2l sin ζ

}
. (5.12)

For the half-line problem at hand, given initial data ψ(x, 0) = f(x) for x > 0,

the solution with the required boundary condition at x = 0 may be obtained

by extending the given initial data f(x) on R+ to the region x < 0, such that

f ′(x)− αf(x) = − (f ′(−x)− αf(−x)) , x < 0, (5.13)

i.e. imposing antisymmetry on the boundary condition function. Solving

this equation gives the required extension

fL(x) ≡ eαx
∫ 0

x

du e−αu [f ′(−u)− αf(−u)]

+ eαxf(0), x < 0, (5.14)

where the integration constant is chosen such that fL(0) = f(0).

Convoluting the data so extended with the full-line propagator (5.12)

then gives the solution

ψ(x, ζ) =

∫ 0

−∞
dx′ K(x, ζ;x′, 0) fL(x′)

+

∫ ∞
0

dx′ K(x, ζ;x′, 0) f(x′), x > 0. (5.15)
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Figure 5.1: Snapshots of |ψ(x, t)|2 with the initial data f(x) = e−(x−3)2

4
√
π/2

,

and parameters Λ = −1 and α = 1.0. The Universe moves toward the
origin (t = 0.1− 1.5), expands asymmetrically (t = 2.9), and contracts again
(t = 4.8). The profiles at t = 1.5 and t = 4.8 are nearly identical.

It is straightforward to construct explicit examples of such solutions; all de-

scribe Universes that expand out to a maximum size, re-collapse, and bounce

again. This is of course expected since wave packets are confined in the half-

oscillator potential. Figure (5.1) shows the dynamics of a representative

Gaussian wave function with Λ = −1, and α = 1. The asymmetric bounce is

evident, and the second and fourth frames demonstrate the multiple bounce

feature.

Λ > 0: The Hamiltonian is not bounded below. However the unitary evo-

lution operator is still well defined since the Hamiltonian has self-adjoint

extensions. The propagator on R is obtained by the replacement l → il to
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give

K̄(x, ζ;x′, 0) =

√
1

2πil sinh ζ

× exp

{
i[(x2 + x′2) cosh ζ − 2xx′]

2l sinh ζ

}
. (5.16)

Solutions of the time-dependent Schrödinger equation with the boundary

condition φ′(0)−αφ(0) = 0 are found in the same way as above by extending

the initial data function to x < 0. It is evident that the propagator is damped

for large times ζ due to the prefactor. However for the very small Λ that is

experimentally observed, the decay time would be very large. (It is useful

to note that the issue of convergence of the Euclidean functional integral for

the inverted oscillator was studied in [32], where it is shown that the integral

for the propagator converges if the propagation time is bounded by a factor

of the oscillator frequency.) Fig. 2 shows the propagation of the same initial

Gaussian wave packet as that in Fig. 1, but now for positive Λ. The wave

packet moves outward and spreads rapidly.

5.2.2 Quantization on R

In the above we started with the standard canonical parametrization for the

FLRW cosmology which led to the oscillator on the half-line. There is an

alternative parametrization that directly gives the oscillator on the real line
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Figure 5.2: Snapshots of |ψ(x, t)|2 with the initial data f(x) = e−(x−3)2

4
√
π/2

, and

parameters Λ = 1 and α = 1.0. The initial wave packet travels outwards and
spreads.

after a rescaling of variables. This is

qab = A4/3(t)eab

πab =
1

4A1/3(t)
PA(t)eab, (5.17)

where the phase space (A,PA) is now R2.

In this parametrization there is an exact Lorentzian “Hartle-Hawking”

wave function, which is the “amplitude for a three-geometry given by a path

integral over all compact positive-definite four-geometries which have the

three-geometry as a boundary”[53]:

ψ[q] =

∫
D[g]D[φ] exp (−S[g, φ]) , (5.18)

where the S is the Euclidean action for matter and gravity, and the gravity

measure is designed to reflect the definition above.
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In our case, we deploy the boundary condition obtained by setting x′ = 0

in (5.16); this is the closest to the HH condition in Lorenzian theory:

ΨHH ≡ K̄(A, ζ; 0, 0) =

√
1

2πil sinh ζ
exp

(
− iA2

2l tanh ζ

)
, (5.19)

where A4 = det(qab) ≡ q, and since we are now on the full line, A ∈ R. This

expression is just the oscillator propagator on the real line for Λ = 1/l2 with

A0 = ζ0 = 0. For large times ζ = t/l this is

K̄(q, ζ; 0, 0) −→ 1√
πil

exp

(
−
i
√
q + t

2l

)
. (5.20)

This is oscillatory in 3-volume, and decays exponentially in time t.

5.3 Discussion

The main result detailed in this chapter is that in general relativity cou-

pled to pressureless dust in the dust time gauge, the FLRW model with a

cosmological constant has a physical Hamiltonian that is exactly that of a

harmonic oscillator with frequency determined by
√

Λ. The Hamiltonian has

a one-parameter(α) set of self-adjoint extensions, and explicit solutions of

the time-dependent Schrödinger equation are readily constructed. All cases

give singularity avoidance, which here means that wave functions describing

the Universe bounce at small spatial volume for any value of α, regardless of

whether the configuration space is the half line or the full line.

99



It is interesting to compare these results with those obtained in LQC

[3] using the connection-triad variables. There the Λ = 0 case was studied

with scalar field time, where the form of the Hamiltonian is such that wave

function dynamics requires numerical study. It was subsequently studied in

dust time in [60]. In both these cases the Hamiltonian is essentially self-

adjoint. In our case the bounce occurs for all self-adjoint extensions, and

can be asymmetric in the sense that there is a phase shift at the bounce

determined by α. Only the α = 0 case gives a symmetric bounce.

For comparison with Dirac quantization, the corresponding quantum the-

ory also resembles the oscillator, but only for the Laplace-Beltrami operator

ordering in the kinetic term in the Wheeler-DeWitt operator [68]. However,

in [68] only the Λ = 1 case is considered and the most general self-adjoint

extension with Robin boundary conditions is not addressed. Nevertheless, it

is one of the few cases where it seems possible to rigorously establish equiv-

alence between Dirac and reduced phase space quantizations. It would be

interesting to study this issue for full quantum gravity with dust time [61].

Our consideration and results are entirely in the Lorentzian theory, and as

such may be compared with similar models that invoke the Hartle-Hawking

prescription in Lorentzian time, in particular the recent debate concerning

integration contours for the propagator [45, 38]. The latter work reports a

suppression factor exp
(
−Λl2p

)
in the propagator for the no boundary wave

function of the Universe in the semiclassical approximation. We find a similar

result, but our state is exact, (i.e. not just a semiclassical approximation),
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and also has explicit (dust) time dependence: eqn. (5.20) has the factor

exp(−t/2l), which for fixed t = t0 exhibits an exponential decay. From the

currently observed value of Λ, l ∼ 1060lp, therefore the characteristic decay

time is ∼ 1060 Planck times, which is close to the age of the Universe.

The model with spatial curvature k 6= 0 and additional matter fields such

as the minimally coupled scalar field is not exactly solvable. The physical

Hamiltonian for this case in the dust time gauge (after the canonical trans-

formation (5.4) ) is

Hk
p =

1

2

(
p2 − Λx2

)
+ kx2/3 +

p2
φ

2x2
+ x2V (φ). (5.21)

Models such as this demonstrate that it is useful to consider matter time

gauges in the cosmological setting. Gravitational perturbations can be added

to the physical Hamiltonian in a similar way, while retaining the oscillator

form of the homogeneous part of the kinetic term. This may provide a useful

starting point for studying singularity avoidance in dust time gauge in the

inhomogeneous setting.

We note that it is an important consideration to extend the model we have

studied in two ways – to include anisotropy, and beyond that, inhomogeneity.

The former is a larger minisuperspace model with a few more phase space

degrees of freedom. A classical analysis in dust time gauge appears in [7] and

was detailed in Chapter 4. Inclusion of general inhomogeneities is of course

more difficult in that it involves studying field theoretic models such as the
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Gowdy cosmologies [44]. The importance of such extensions is of current

interest due to the issue of whether the no-boundary wave function is stable

to perturbations: there are claims for [39] and against [37]. These works do

not use the dust time gauge and physical Hamiltonian that we study here,

so an extension of our approach beyond FLRW to include a gravitational

perturbation of fixed wavenumber along the lines studied in these papers

would be potentially useful.

Lastly the Λ < 0 case may be of interest in the context of the AdS/CFT

conjecture and holography. Specifically the idea of using matter (or other)

time gauge in the bulk might provide a useful mechanism to probe bulk

dynamics and the holographic signatures of resolved singularities in such

settings [29], something which appears so far to be largely unexplored.
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Chapter 6

Quantum dynamics of Bianchi I

spacetimes

In this chapter we will explore the quantum dynamics of Bianchi I spacetimes

using the dust time gauge. In the canonical setting, several aspects of the

quantum Bianchi I model with and without a scalar field have been studied

analytically within the context of Loop Quantum Cosmology (LQC) [70, 69].

Recently, this model was also studied numerically using effective dynamics

techniques in LQC [40]. In these studies the scalar field or some geometrical

quantity like volume provides a relational time. Another approach to quan-

tizing the Bianchi I model is using the Feynman path integral. This was first

discussed in [22, 19] using Misner variables for both vacuum and fluid-filled

Bianchi I models using Ω as a time variable. The time gauge is implemented

as a delta function in the path integral measure. In contrast, the approach
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detailed in this chapter involves fixing the time gauge at the classical level

and solving the Hamiltonian constraint to determine the physical Hamilto-

nian. This partial deparameterization of the theory is detailed in Chapter 2.

We then determine the Lagrangian for the physical degrees of freedom via a

Legendre transform of the physical Hamiltonian and define the path integral

using this Lagrangian.

It is important to note that the model is symmetry reduced before quan-

tization and the classically absent inhomogeneous degrees of freedom are

neglected during quantization. It is not clear how such quantum cosmology

models are related to full quantum gravity models, however as with LQC

we expect several qualitative aspects to survive in the full quantum grav-

ity models. Furthermore, classically there is ample evidence that near a

cosmological singularity the dynamics is “velocity” dominated and the inho-

mogeneities can be neglected. If this conjecture also holds in the quantum

regime then the symmetry reduced quantum dynamics of the Bianchi models

will be of particular interest.

In the next section we define the Bianchi I path integral and detail the

regularization and discretization of this path integral. Section 6.2 discusses

the semiclassical analysis of the path integral using PIMC techniques and in

Section 6.3 we calculate the no-boundary wavefunction for dust filled Bianchi

I cosmologies.
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6.1 Bianchi I Path Integral

The Hamiltonian for a Bianchi I spacetime in the dust time gauge (N = −1)

is given by:

Hp =
1

4 exp{
∑

i αi}

[
−1

2

∑
i

π2
i +

∏
i<j

πiπj

]
. (6.1)

The action for the system is:

S = 2

∫
exp

{(∑
i

αi

)}[∏
i<j

α̇iα̇j

]
dt. (6.2)

Transforming to a new set of variables (this is a canonical transformation):

x =
4√
3

3∏
i=1

√
αi, β+ =

1

6
(α1 + α2 − 2α3) , β− =

1√
3

(α1 − α2) , (6.3)

the action takes the form

S =

∫
dτ

[
1

2
ẋ2 − 9

8
x2
(
β̇2

+ + β̇2
−

)]
. (6.4)

We then define the Lorentzian path integral as:

Z =

∫
D xD β+D β−e−iS. (6.5)

Wick rotating t → −it in the lower half plane, we obtain the Euclidean

action:

SE =

∫
dτ

9

8
x2
(
β̇2

+ + β̇2
−

)
− 1

2
ẋ2, (6.6)
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where the overdots now indicate derivatives with respect to Euclidean time.

The Euclidean path integral takes the form

Z =

∫
D xD β+D β−e−SE . (6.7)

Physically reasonable matter fields have positive energy density. Requir-

ing positive energy density for the dust field imposes Hp > 0. After Wick

rotation, this leads to the condition LE > 0 and thus the Euclidean action

is positive definite yielding a convergent Euclidean path integral. Positivity

of energy density is a classical expectation for reasonable sources of matter.

However, there is no guarantee that this weak energy condition survives in

the quantum regime. It is plausible that some form of an averaged weak en-

ergy condition survives in the quantum regime, even though the weak energy

condition does not hold locally [58, 46, 71]. In the following sections we will

discuss results of PIMC calculations that implement LE > 0 locally at each

time step as well as calculations which only implement SE >= 0 allowing

LE < 0 locally.

We numerically compute the path integral in Eq.(6.7) using the PIMC

algorithm detailed in Chapter 2. We start by discretizing the time parameter

intoN time steps. Throughout this chapter we use a stepsize of ε = 0.011. We

1Smaller step sizes give similar results.
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use a forward difference scheme to discretize the derivatives and a midpoint

scheme for the configuration variables2. The discretized Euclidean action is

SE =
N−1∑
n=1

9

8ε

[
(x(n+ 1) + x(n))2

4

] (
(β+(n+ 1)− β+(n))2 + (β−(n+ 1)− β−(n))2

)
− 1

2ε
(x(n+ 1)− x(n))2, (6.8)

The discrete path integral is given by

Z =
N∏
n=1

∫
dxn

∫
dβ+n

∫
dβ−ne

−SE . (6.9)

Thus the PIMC amounts to carrying out 3N Monte Carlo integrations.

6.1.1 Classical Euclidean solutions

Before we investigate the quantum dynamics let us discuss the classical tra-

jectories of the Euclidean time system3. We are interested in finding solutions

to the Euler-Lagrange equations derived from SE. In our old variables

SE = −2

∫
exp

{(∑
i

αi

)}[∏
i<j

α̇iα̇j

]
dt (6.10)

2A midpoint scheme is commonly implemented for finite time path integrals in quan-
tum mechanics to avoid large boundary effects. Furthermore, for quantum mechanical
sigma models only the midpoint scheme yields the correct covariant continuum integrals
[36]. Here this is one of the ingredients in our definition of the discrete path integral.

3From here on t denotes Euclidean time unless otherwise stated.
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yields the equations of motion:

α̈i − exp

{(∑
i

αi

)}[∏
i<j

α̇iα̇j

]
= 0. (6.11)

These equations are more amenable in the Hamiltonian setting:

α̇i =
1

4e
∑
i αi

(πi − πj − πk) , π̇i = HE, (6.12)

where the πi are momenta conjugate to αi and the Euclidean Hamiltonian,

HE, is a constant of motion. The solutions to the Euclidean equations of

motion for (LE > 0) are:

αi = pi ln τ +

(
2

3
− pi

)
ln (2Γ− τ) + ln ξi, (6.13)

with τ = 3HEt + Λ + Γ where Λ, Γ and ξi are integration constants with∏
i ξi = 1

24HE
. The exponents pi satisfy

∑
i

pi = 1,
∑
i

p2
i = 1. (6.14)
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In terms of the new variables (x, β±) these solutions take the form:

x =
4√
3

√
τ (2Γ− τ)

24HE

β+ =
1

6

[
(p1 + p2 − 2p3) ln τ + (2/3− p1 − p2 + 2p3) ln (2Γ− τ) + ln

(
ξ1ξ2

ξ3

)]
β− =

1

2
√

3
(p1 − p2)

[
ln τ − ln (2Γ− τ) + ln

(
ξ1

ξ2

)]
. (6.15)

The solutions have two cosmological singularities i.e., the universe ex-

pands and then contracts for −Γ+Λ
3HE
≤ t ≤ Γ−Λ

3HE
.

6.2 Semiclassical PIMC Analysis

Though the Path Integral Monte Carlo (PIMC) technique detailed in the

Chapter 2 can be used to perform fully non-perturbative calculations, a semi-

classical analysis is useful to determine if our intuitions are borne out. Using

the minisuperspace path integral detailed above we can explore homogeneous

quantum fluctuations around classical dust-filled Bianchi I universes. In or-

der to do this, we seed our Monte Carlo algorithm with a classical path i.e.,

classical trajectories for x, β+, β− for some initial data. We then explore the

neighbourhood of this classical path by tuning the exploration parameter ∆.

The algorithm we use is detailed in Chapter 2 with the change that instead

of one variable we now have three independent variables. At each Monte

Carlo step we randomly select one of the three variables to change and then

apply the single variable algorithm detailed in Chapter 2. We do not change
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Figure 6.1: A plot of the action versus Monte Carlo sweeps(×100) from a
representative thermalization run. The run was seeded with a random path
and the Markov chain allowed to thermalize for 1.6 million sweeps. It is clear
that the action stabilizes after 500, 000 sweeps. We assume the Markov chain
has thermalized once the action stabilizes.

all three variables at once as this usually results in large changes in the action

leading to lower acceptance rates. As always, sample paths are collected after

the Markov Chain thermalizes, which is determined by observing the action

(see Figure 6.1).

From the initial classical seed path we generate and thermalize five dif-

ferent Markov chains in order to better explore the path space. For these

thermalization runs the parameter ∆ is tuned such that the acceptance rate

is between 15 − 30%. Interestingly this results in ∆ ∼ 0.01 − 0.03. How-

ever, this is not surprising since we do expect the classical path to be a local

minimum of the action. After the five chains are thermalized, we can collect

sample paths to perform measurements. In order to calculate expectation

values, samples from all five chains are merged and averages are computed
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Figure 6.2: The average volume and anisotropies. The solid black lines
indicate the classical trajectories. In the second plot the red curve denotes
〈β−〉 and the blue curve denotes 〈β+〉.

over this merged set of paths. The plots in Figure 6.2 show the average

volume and anisotropies for the collected samples. In order to quantify the

difference between quantum (semiclassical) paths and classical trajectories

of the dust-filled Bianchi I universe, we define the relative deviation of the

quantum path (X) from the classical one (Xcl) as

σX =

√
〈(X −Xcl)2〉

Xcl

(6.16)

The semiclassical expectation is that this fluctuation (σX) is large for small

universe and decreases as the universe grows larger. The classical path used

to seed the PIMC algorithm and the evolution time were chosen such that the

universe starts out expanding from very small volumes ( 0.8l3p) to a maximum

( 15l3p) and then re-collapses to 0.8l3p.
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Figure 6.3: Fluctuations in the anisotropies with respect to time. Since
σX →∞ as Xcl → 0, we do not plot σX when the classical solution for X is
less than 0.01. This is the reason for the gap in the second plot.

Figure 6.3 and Figure 6.4 display this deviation versus time for the vari-

ables x, β+, β− and the volume of the spatial slices. As expected we find that

the quantum fluctuations are damped for large universes.

The Bianchi I exponents pi satisfy

∑
i

pi = 1,
∑
i

p2
i = 1. (6.17)

In the semiclassical approximation the expectation values of the scale fac-

tors are expected to be close to the classical values and we may expect the

exponents to approximately satisfy these conditions. In order to verify this

consider the scale factors a(t), b(t) and c(t) which are related to our variables
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Figure 6.4: Fluctuations of x and spatial volume with respect to time. In
the plots on top we plot 〈x〉 and 〈V 〉 for comparison.

as

a =

(
3x2

16

)1/3

eβ++
√

3β− , b(t) =

(
3x2

16

)1/3

eβ+−
√

3β− , c(t) =

(
3x2

16

)1/3

e−2β+ .

(6.18)

We can calculate the expectation values 〈a〉, 〈b〉 and 〈c〉 by averaging

the functions given above over all sample paths generated by the PIMC

algorithm. We then fit a model to these averages of the form

f(t) = c1(c2 + 3Ht+ Λ)c3(c2 − 3Ht− Λ)2/3−c3 , (6.19)

where the values of H and Λ are the same as for the classical paths with

which the Markov chain is seeded and c1, c2 and c3 are the parameters to be
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Classical Model R2

p1 0.7180 0.709 0.94

p2 0.6126 0.5699 0.91

p3 −0.3305 −0.2595 0.99∑
i pi 1 1.0194 −∑
i p

2
i 1 0.8948 −

Table 6.1: Values of the Kasner exponents extracted from fitting curves
to the expectation values of the scale factors. The first Kasner sum rule is
approximately satisfied by the quantum exponents but there is a discrepancy
with the second sum rule.

fit. Figure 6.5 shows the results of this curve fitting and Table 6.1 provides

the details. The semiclassical values of the exponents are close to the classical

exponents but do not exactly satisfy Eq. (6.17). Only the first Kasner sum

rule is approximately satisfied by the quantum exponents in the semiclassical

regime. This is an indication that the Kasner transition law for a Bianchi

IX spacetime may not be applicable in the semiclassical regime. However, a

full simulation of the semiclassical dynamics of the Bianchi IX spacetime is

needed to conclusively answer this question.

6.3 Wavefunction of the universe

As in the FLRW case we are interested in calculating the “no-boundary“

wavefunction for this model. As usual, this corresponds to calculating the

amplitude of a finite volume spatial geometry to emerge from a zero volume

one. In this model, this corresponds to integration over paths with x(0) = 0

with x(T ) left unspecified. We explore two boundary conditions for the
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Figure 6.5: The scatter plot denotes the expectation values of the scale factor,
the dashed blue line is the classical solution and the solid red line are the
fits to the scatter plots. We see that the fitted values (in red) for all three
Kasner exponents are close to the classical values (in blue). The fits are of
high fidelity with R2 > 0.9 for each of the fits.
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anisotropies:

1. Fixed initial values for the anisotropies and unspecified final values.

2. Unspecified initial and final values (free boundaries)

For the PIMC algorithm we start with random arrays for x, β+, β− and

fix x = 0. We then apply the algorithm detailed in the previous section with

the following modifications:

• We always sample the last element of the arrays and always keep the

first element of the x array fixed.

• After every Monte Carlo sweep we apply an overrelaxation step.4

6.3.1 LE > 0

The Bianchi I path integral can be naturally regularized by only summing

over paths which yield positive Lorentzian dust energy density. As detailed

in Section 6.1 this implies that the Euclidean Lagrangian is positive definite.

This is a local condition which couples consecutive array elements. We im-

plement it in the PIMC algorithm by rejecting all proposals which result in

paths which violate LE > 0 at any timestep.

4Overrelaxation is a technique used to allow the algorithm to explore the configuration
space more efficiently. The basic idea is to pick a proposal for a given variable that
is as far as possible from the previous path without producing a large change in the
action [35]. In our model the action is invariant under the parity transformation for
any of the variables. Thus, in every overrelaxation step we apply the transformation
(x, β+, β−) 7→ (−x,−β+,−β−) for all the variables.
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The two different types of boundary conditions for the anisotropies de-

scribed above (first elements fixed and sampled) result in different wavefunc-

tions. However, these wavefunctions are qualitatively similar. In both cases

we find that large spatial volumes are suppressed for all times, while large

anisotropies dominate. Furthermore, the spread in the wavefunction with

respect to the anisotropies is significantly larger than the spread in the vol-

ume component. For the first type of boundary conditions in which we fix

x(0) = 0 and β±(0) to some initial value the wavefunction with respect to

x is more sharply peaked (see Fig. 6.6). On the other hand the second set

of boundary conditions with β±(0) kept free results in longer tails for x (see

Fig. 6.7). Thus with these boundary conditions there is a small probability

of larger universes emerging. These results are robust for different ranges of

the random initial seed paths. We tested ranges from 1−200. Higher ranges

resulted in longer thermalization times and it was not possible to go beyond

the range [−200, 200] for any of the variables using our implementation of

the PIMC algorithm.

The numerical complexity of this model is rooted in the issue of thermal-

ization of the Markov Chain. Even with acceptance rates of 30 − 50%, the

thermalization is extremely slow. The acceptance rates decrease drastically

as we increase the range of the initial random configurations, especially with

large ranges for x. Thus, thermalization time seems to increase exponentially

for such initial data. This dependence on the initial seed for the Markov chain
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Figure 6.6: Plots of the no boundary wavefunction (squared) with respect to
the variables (x, β+, β−) with β±(0) held fixed. The action stabilized after
60 million thermalization sweeps to a value of 158.05. We used an adaptive
∆ in the range 0.05− 0.5 to maintain an acceptance rate of 30%− 50%.

is also seen in simple systems like the Ising model 5. However, in the current

model the effect is quite dramatic.

6.3.2 SE ≥ 0

Another regularization for the path integral is to only sum over paths with

positive definite Euclidean action. We implement this by rejecting paths for

which the Euclidean action is less than zero. As was observed for the closed

FLRW model in [5] the Euclidean action rapidly approaches zero during

thermalization and the path integral is dominated by paths with SE = 0. In

5starting from a fully ordered configuration results in longer thermalization times for
the Ising Model
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Figure 6.7: Plots of the no boundary wavefunction (squared) with respect to
the variables (x, β+, β−). The action stabilized after 60 million thermalization
sweeps to a value of 185.62. We used an adaptive ∆ in the range 0.05− 0.5
to maintain an acceptance rate of 30%− 50%.

general the paths yielding SE ∼ 0 is uncountably infinite and diverse. We

essentially have a continuum of vacua characterized by the surface SE = 0.

In a single PIMC run we can only explore a small subset of these paths.

The size and characteristics of this subset are determined by the initial path

used to seed the Markov chain and the parameter ∆. In each run the PIMC

run converges to the subset of SE ∼ 0 paths closest to the initial path in

path space. This implies that different runs result in different no-boundary

wavefunctions. Figure 6.8 shows the no-boundary wavefunctions obtained

from two different PIMC runs seeded by different random initial paths with

the same range of allowed values. The two wave functions are quite different

even though the runs were seeded with random paths in the same range.
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Figure 6.8: Plots of the no boundary wavefunction (squared) with respect to
the variables (x, β+, β−) with the regularization SE ≥ 0.

The difference is particularly stark in the x variable where one wavefunction

assigns significant probability to universes with spatial volume of the order

of l3p whereas the other assigns zero probability to such small universes.

6.4 Discussion

In this chapter we have investigated the quantum dynamics of a dust filled

Bianchi I universe using PIMC techniques. We performed a semiclassical

analysis by seeding the Markov Chain with a classical path. Given that

we sample uniformly in the interval [∆,∆] around the current path, this

essentially restricts the set of paths allowed in the path integral to some

neighborhood of the classical solution. Our results indicate that in this semi-
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classical regime fluctuations in volume and anisotropy are large when the

universe is small and decrease as the universe expands. Thus, as expected

larger universes appear more classical.

We also checked if the Kasner sum rules remain valid in the semiclassical

regime. We find mild violations of the sum rules indicating that the Kasner

transition law derived using the sum rules may not be valid in the semiclas-

sical regime. However, this does not rule out the possibility that quantum

Bianchi IX dynamics can be quantified in terms of semiclassical Bianchi I

dynamics.

Our semiclassical analysis did not attempt to rigorously define the neigh-

borhood of a classical path but instead used the parameter ∆ as a proxy for

how far we explore from the classical path in path space in each Monte Carlo

step. A more systematic exploration of the neighborhood of the classical path

is possible by sampling the Lefschetz thimble containing the chosen classical

path [4]. However, this is computationally much more intensive than the

approach we have presented and is unlikely to provide a vast improvement

over our approach given that the classical path dominates the path integral.

We also calculated no-boundary wavefunctions for this model. We de-

fine no-boundary conditions as the requirement that the spatial volume (and

therefore x) at t = 0 vanishes. We considered two different boundary condi-

tions for the anisotropies. The first set of conditions fixed the initial values

of the anisotropies and left the final values free, while the second set corre-
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sponds to free initial and final values for the anisotropies. Interestingly we

find that both sets of boundary conditions result in wavefunctions that share

some qualitative features. Our key result is that in this non-perturbative

microsuperspace setting we find that with the no boundary condition large

universes are suppressed and large anisotropies dominate. Furthermore, in-

line with our semiclassical analysis multiple Monte Carlo runs with random

initial configurations indicate that larger anisotropies are more probable for

smaller universes and the spread in the distribution of the anisotropies is also

larger for smaller universes.

The non-perturbative results for the Bianchi I spacetime detailed here

provide a stark contrast to results obtained for the biaxial Bianchi IX space-

time in the semiclassical setting. These results suggest that for the Bianchi

IX spacetime large anisotropies are suppressed in the path integral [63]. If the

quantum dynamics for the Bianchi IX spacetime can be treated via transi-

tions between quantum Bianchi I spacetimes, then our results would indicate

that large anisotropies dominate in the Bianchi IX path integral. However, a

proper PIMC calculation of the no-boundary wavefunction for a Bianchi IX

model needs to be performed in order to draw useful comparisons with the

results in [63]. We expect thermalization times for the Bianchi IX model to

be significantly longer than for the Bianchi I model which maybe considered

the free particle version of the problem. Therefore, the algorithm used here

will need to be suitably modified to improve performance times.

One such direction for modification involves parallel rejection. Parallel
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rejection utilizes several CPU cores to calculate multiple proposals (paths)

at the same time. Once one of these is accepted the current path is updated

and the parallel rejection is restarted.

Another direction to explore would be to use a Hybrid Monte Carlo

(HMC) algorithm [76] in place of a simple Metropolis-Hastings algorithm.

HMC relies on a supplementary Hamiltonian composed of the fictitious mo-

menta (one for each original variable) that form the kinetic term and the

original Euclidean action which acts as the potential term. At each step in

the HMC the momenta are updated randomly and a proposal for the con-

figuration (original) variables is made by evolving the Hamiltonian system

for a specified time. The proposal is accepted or rejected using a Metropolis

algorithm with a target distribution dependent on the Hamiltonian. The

central idea is that the Hamiltonian dynamics can be used to provide distant

proposals, thus allowing for wider and quicker exploration of the path space.

The major drawback of this algorithm is the difficulty in tuning the algo-

rithm parameters. Even small changes in parameters can result in extreme

deterioration in performance.

Lastly, we investigated an alternative regularization for the path integral

by restricting the Euclidean action to be positive semi-definite. This regular-

ization results in a continuum of vacua to which the algorithm can converge

and finite number of samples do not result in consistent results. It is possible

that the convergence of the Euclidean action is not a suitable observable to
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determine the thermalization of the Markov chain. Finding a suitable set of

observables would require further study. Perhaps with such a set of observ-

ables in hand this regularization can be used to study qualitative features

that are common to paths that are expected to dominate the path integral.
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Chapter 7

Summary and Future

Directions

This thesis was an exploration of the classical and quantum aspects of a dust

+ gravity system with the dust field used to fix the time gauge.

A fundamental issue in quantizing GR is presented by the “problem of

time” [62] caused by the absence of a preferred time-like Killing vector field

for arbitrary spacetimes and thus a lack of a preferred global time coordinate.

Classically, this manifests in the fact that the Hamiltonian is constrained to

vanish; while in the quantum domain, the Hamiltonian annihilates all physi-

cal states leading to non-evolving observables. This is in sharp contrast with

standard quantum theory where a non-zero Hamiltonian generates unitary

time evolution. One path out of this quandary is to partially de-parametrize

the theory before quantization by choosing an internal time (gauge choice).
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Following [61], in this thesis we use a dust field as time. This is motivated by

the observation that a clock in our usual experience is made of matter, there-

fore it is natural to use a matter field as a clock. Furthermore, the greatest

advantage of using dust time is that the physical Hamiltonian is the same

functional of all other phase space variables besides the dust as the Hamil-

tonian constraint, whereas other matter time gauges usually yield square

root Hamiltonians. This considerably simplifies analytical and numerical

calculations. For homogeneous models this approach is exactly equivalent to

reduced phase space quantization, since the gauge fixing picks out a unique

point on every gauge orbit. Moreover, this approach allows us to employ

powerful tools developed for standard quantum theory in studying the quan-

tum effects of gravity. This is especially remarkable given the roadblock of

determining the physical Hilbert space of the Dirac quantized theory in order

to obtain (observationally and theoretically) testable predictions.

In general, quantizing after solving the constraints is not equivalent to

quantizing the constrained system and imposing the constraints as oper-

ators. However, both schemes involve several choices in the quantization

procedure and it may be possible to make a consistent set of choices in both

approaches to yield equivalent quantum theories. An example is provided

by the equivalence of Dirac quantization using the Laplace-Beltrami opera-

tor ordering and reduced phase space quantization in the dust time gauge

for a spatially flat FLRW cosmology with dust and a positive cosmological

constant detailed in Chapter 5. Moreover, though the gauge fixed theories
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are equivalent classically the resultant quantum theories in different gauges

are inequivalent. Thus the quantum dynamics of these theories may not be

comparable. Recently some work has been done to develop a framework to

relate quantum theories resulting from using different gauges to gauge fix the

same underlying classical theory before quantization [57, 88]. The procedure

relies on connecting these myriad quantum theories to the Dirac quantized

theory. Though it has been successfully applied to toy models, the arguments

for gravitational models are still formal.

It is important to keep in mind certain caveats when using the dust field

as time. Though the dust field provides an extremely useful matter based

clock, it is an idealization. We must bear in mind that the dust field is not a

fundamental physical matter field i.e. it is not part of the standard model of

particle physics. Moreover, the dust field provides a specific foliation of the

spacetime namely the proper time foliation. Not all 4 geometries admit this

type of foliation and are thus excluded from both the classical and quantum

models with dust. This also means that the quantum theory is a theory of a

restricted set of 3-geometries relative to those allowed for GR with arbitrary

matter sources. Though these are valid caveats such concerns are bound

to arise in any type of quantization scheme that follows after gauge fixing.

Furthermore, in GR the allowed set of the geometries are determined by the

matter sources in the model and this is also to be expected with models with

dust.

Another criticism of the models discussed in this thesis is that symmetry
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reduction of the theory is done before quantization. However, given the com-

plexity of quantizing full GR, applying this reduced phase space approach to

symmetry reduced models is relatively simple and can yield crucial insights

into the full theory. Our expectation is that certain qualitative features of

these symmetry reduced models will survive in the full theory.

There are several interesting consequences of a dust field as a choice of

time. In Chapter 3 we showed that in a 3 + 1 dimensional system with dust

coupled to gravity the usual interpretation of gravitational waves as spin

2 modes is preserved in the dust time gauge. Moreover, GR+dust in the

dust time gauge allows us to solve the ”problem of time” while maintain-

ing consistency with standard Lorentz covariant field theory on Minkowski

spacetime.

Dust time is also useful in understanding how matter decouples from

geometry on the approach to a space-like singularity. In Chapter 4 we derived

a transition law governing the near singularity dynamics of a Bianchi IX

spacetime with dust which includes the dust degree of freedom. We show

how this degree of freedom drops out in the asymptotic limit allowing us

to recover the original vacuum Kasner transition law proposed by Belinskii-

Khalatnikov-Lifschitz [18].

In the quantum domain Chapter 5 shows that the dynamics of a spatially

flat FLRW spacetime with dust and a cosmological constant can be mapped

onto an oscillator on a half line using the dust field as time. This system is
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easily quantized and we provide a clean derivation of singularity avoidance

for this model for all values of the cosmological constant. For studying more

complex homogeneous models like the closed and open FLRW spacetimes

and anisotropic spacetimes, we have developed a framework for applying

Monte Carlo techniques to homogeneous cosmological models in the dust

time gauge. We define our quantum theory using the path integral approach

where paths are weighed by the gauge fixed action. By Wick rotating to Eu-

clidean time, the exponentiated action behaves as a probability distribution

which can be sampled using Markov Chain Monte Carlo (MCMC) techniques.

The advantage of the dust time gauge is that in some settings it is possible

to define a positive definite Euclidean action guaranteeing the convergence

of the Euclidean Path Integral. In other settings, requiring positivity of the

dust density restricts the paths that can be included in the path integral, al-

lowing us to extract useful results. In Chapter 6 we study a Bianchi I model

with dust using these numerical techniques. For this model we investigate

the semiclassical dynamics and also calculate the no-boundary wavefunction

using two different regularization schemes.

Our study of the Bianchi I model indicates that in the semicalssical regime

the Kasner sum rules are violated. This raises the question whether a de-

scription of the quantum Bianchi IX spacetime can be constructed in terms

of the Bianchi I dynamics as in the classical setting. Results from the ef-

fective dynamics studies of the Bianchi IX spacetime in LQC show that the

129



effective dynamics of Bianchi IX spacetimes exhibit Bianchi I phases with

Bianchi II transitions [34]. It would be interesting to compare the semiclassi-

cal dynamics obtained from the path integral for the Bianchi IX model in the

dust time gauge with these results. In order to do this the PIMC algorithm

we implemented for the Bianchi I model will need to be modified to keep the

rejection rates within an acceptable range. We hope to explore alternative

algorithms in future work.

The work presented here can also be extended to include other matter

fields besides dust. The interplay of matter and gravitational degrees of free-

dom in the quantum regime is crucial to understanding the physics of the

early universe. Scalar fields would be especially interesting in understanding

the quantum underpinnings of inflation. Including other matter sources is

remarkably straightforward when using the dust time gauge since the addi-

tional matter Hamiltonians can just be added to the physical Hamiltonian.

It is important for any quantum exploration of gravity to include inhomo-

geneities. Including inhomogeneities beyond the framework of perturbation

theory requires studying field theoretic models such as Gowdy cosmologies

in the dust time gauge. In these models symmetries dictate that all met-

ric functions depend on (dust) time and one other coordinate. Thus, these

models are two-dimensional field theories with infinite degrees of freedom.

Classically, Gowdy models are relatively simple and well-studied. They pro-

vide insights into general relativity that homogeneous models cannot. We

expect this to be the case in the quantum setting as well. Classically, per-
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haps the most relevant question to investigate for these models in dust time

is the domain of validity of the dust time gauge. That is, does the choice of

dust time provide a global foliation of the spacetime?

For the quantum model, we must deal with the spatial diffeomorphism

constraint which was absent in the homogeneous setting. This can be done

either by choosing a diffeo-gauge and solving the constraint before construct-

ing the path integral or by imposing the constraint via a delta function in

the path integral. These models provide the perfect testbed for Monte Carlo

(MC) techniques (and algorithms) that need to be developed for infinite di-

mensional GR models and are the natural next step.
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[18] V A Belinskĭı, E M Lifshitz, and I M Khalatnikov, Oscillatory approach

to the singular point in relativistic cosmology, Soviet Physics Uspekhi

13 (1971), no. 6, 745.

[19] B. K. Berger, Path Integral Quantum Cosmology 2 - Bianchi Type I with

volume dependent source, Phys. Rev. D32 (1985), 2485–2488.

[20] , Application of Monte Carlo simulation methods to quantum

cosmology, Phys. Rev. D48 (1993), 513–529.

[21] B. K. Berger, D. Garfinkle, J. Isenberg, V. Moncrief, and M. Weaver,

The Singularity in generic gravitational collapse is space-like, local, and

oscillatory, Mod. Phys. Lett. A13 (1998), 1565–1574.

[22] B. K. Berger and C. N. Vogeli, Path Integral Quantum Cosmology 1 -

Vacuum Bianchi Type I, Phys. Rev. D32 (1985), 2477–2484.

134



[23] Beverly K. Berger, Monte Carlo simulation of a quantized universe, Gen-

eral Relativity and Gravitation 20 (1988), no. 8, 755–763.

[24] , Quantum chaos in the mixmaster universe, Phys. Rev. D 39

(1989), 2426–2429.

[25] , Influence of scalar fields on the approach to a cosmological sin-

gularity, Phys. Rev. D 61 (1999), 023508.

[26] , Singularities in Cosmological Spacetimes, Handbook of Space-

time (Abhay Ashtekar and Vesselin Petkov, eds.), Springer, Berlin-

Heidelberg, 2014, pp. 437–460.

[27] Beverly K. Berger, David Garfinkle, and Vincent Moncrief, Numeri-

cal study of cosmological singularities, arXiv e-prints (1997), arXiv:gr–

qc/9709073, [Annals Israel Phys. Soc.13,441(1997)].

[28] Abhijit Biswas and Krishnan R. S. Mani, Relativistic Perihelion Preces-

sion of Orbits of Venus and the Earth, Central Eur. J. Phys. 6 (2008),

754.

[29] Norbert Bodendorfer, Fabio M. Mele, and Johannes Münch, Holographic

Signatures of Resolved Cosmological Singularities II: Numerical Investi-

gations, arXiv e-prints (2018), arXiv:1804.01387.

[30] J. David Brown and Karel V. Kuchar, Dust as a standard of space and

time in canonical quantum gravity, Phys.Rev. D51 (1995), 5600–5629.

135



[31] J. Carlson, S. Gandolfi, F. Pederiva, Steven C. Pieper, R. Schiavilla,

K. E. Schmidt, and R. B. Wiringa, Quantum Monte Carlo methods for

nuclear physics, Rev. Mod. Phys. 87 (2015), 1067–1118.

[32] Michel Carreau, Edward Farhi, Sam Gutmann, and Paul F. Mende,

The Functional Integral for Quantum Systems With Hamiltonians Un-

bounded From Below, Annals Phys. 204 (1990), 186–207.

[33] Ali H. Chamseddine and Viatcheslav Mukhanov, Mimetic Dark Matter,

JHEP 11 (2013), 135.

[34] Alejandro Corichi and Edison Montoya, Loop quantum cosmology of

Bianchi IX: effective dynamics, Classical and Quantum Gravity 34

(2017), no. 5, 054001.

[35] Michael Creutz, Overrelaxation and Monte Carlo simulation, Phys. Rev.

D 36 (1987), 515–519.

[36] Jan de Boer, Bas Peeters, Kostas Skenderis, and Peter van Nieuwen-

huizen, Loop calculations in quantum mechanical nonlinear sigma models

with fermions and applications to anomalies, Nucl. Phys. B459 (1996),

631–692.

[37] Alice Di Tucci and Jean-Luc Lehners, Unstable no-boundary fluctuations

from sums over regular metrics, arXiv e-prints (2018), arXiv:1806.07134.

136



[38] Juan Diaz Dorronsoro, Jonathan J. Halliwell, James B. Hartle, Thomas

Hertog, and Oliver Janssen, Real no-boundary wave function in

Lorentzian quantum cosmology, Phys. Rev. D96 (2017), no. 4, 043505.

[39] Juan Diaz Dorronsoro, Jonathan J. Halliwell, James B. Hartle, Thomas

Hertog, Oliver Janssen, and Yannick Vreys, Damped perturbations in the

no-boundary state, Phys. Rev. Lett. 121 (2018), no. 8, 081302.

[40] Peter Diener, Anton Joe, Miguel Megevand, and Parampreet Singh,

Numerical simulations of Loop Quantum Bianchi-I spacetimes, Class.

Quant. Grav. 34 (2017), no. 9, 094004.

[41] B. Dittrich, Partial and complete observables for canonical General Rel-

ativity, Class. Quant. Grav. 23 (2006), 6155–6184.

[42] , Partial and complete observables for Hamiltonian constrained

systems, Gen. Rel. Grav. 39 (2007), 1891–1927.

[43] Albert Einstein, Die Grundlage der allgemeinen Relativitätstheorie, An-

nalen der Physik 354 (2006), no. 7, 769–822.

[44] Beatriz Elizaga Navascués, Mercedes Mart́ın-Benito, and Guillermo A.

Mena Marugán, Modified FRW cosmologies arising from states of the

hybrid quantum Gowdy model, Phys. Rev. D92 (2015), no. 2, 024007.

[45] Job Feldbrugge, Jean-Luc Lehners, and Neil Turok, Lorentzian Quantum

Cosmology, Phys. Rev. D95 (2017), no. 10, 103508.

137



[46] Christopher J. Fewster and Thomas A. Roman, Null energy conditions in

quantum field theory, Phys. Rev. D67 (2003), 044003, [Erratum: Phys.

Rev.D80,069903(2009)].

[47] David Garfinkle, Numerical simulations of generic singuarities, Phys.

Rev. Lett. 93 (2004), 161101.

[48] , The Nature of gravitational singularities, Int. J. Mod. Phys.

D13 (2004), 2261–2266.

[49] Mirah Gary and Steven B. Giddings, Relational observables in 2-D

Quantum Gravity, Phys. Rev. D75 (2007), 104007.

[50] Christof Gattringer and Christian B. Lang, Quantum chromodynamics

on the lattice, Lect. Notes Phys. 788 (2010), 1–343.
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