
Machine Learning Implementations in

Baseball: An Algorithmic Prediction of the

Next Pitch

by

Jacob Morehouse

Bachelor of Arts and Science, UNB, 2016

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

In the Graduate Academic Unit of Mathematics and Statistics

Supervisor(s): Jeffrey Picka, PhD, Mathematics and Statistics

Tariq Hasan, PhD, Mathematics and Statistics

Examining Board: Guohua Yan, PhD, Mathematics and Statistics, Chair

Usha Kuruganti, PhD, Kinesiology, UNB

This thesis is accepted by the

Dean of Graduate Studies

THE UNIVERSITY OF NEW BRUNSWICK

September, 2020

c©Jacob Morehouse, 2021

Abstract

Machine Learning (ML) has recently begun gaining traction in the statisti-

cal analysis of baseball. Major League Baseball (MLB) has a long history of

using statistics to evaluate players, but recent innovations in player tracking

have introduced the opportunity for ML to flourish. Statcast is a new track-

ing system that generates detailed data pertaining to the movement of both

the players and the ball using cameras and radar technology. This paper

will examine the functionality of predictive models using this data and their

applications in baseball. As an example, we will attempt to predict which

type of pitch a pitcher will throw next. Random forest and support vector

machine algorithms will be created for this learning task.

ii

Dedication

To Mum

iii

Table of Contents

Abstract ii

Dedication iii

Table of Contents iv

List of Tables and Figures vi

1 Introduction 1

2 Notes on the Progression of Baseball Analytics 4
2.1 Historical Review of Sabermetrics 4

2.1.1 Rise in the Public Sphere 4
2.1.2 An Accumulation of Anecdotes 6

2.2 Machine Learning Research in Baseball 7
2.2.1 On the Nature of Baseball Statistics 8

2.3 The Mechanisms of Prediction 12
2.3.1 Bagging, Randomization and their Effects on Data Struc-

tures . 13
2.3.2 Game Theory Considerations in Pitching 15

3 Literature Review 17
3.1 Random Forests . 17

3.1.1 CART . 18
3.1.2 Random Forest Algorithm 19
3.1.3 Random Forest Parameters 21

3.2 Support Vector Machines . 22
3.2.1 Support Vector Machine Algorithm: C-SVC 23
3.2.2 Kernels . 25

iv

3.2.3 One-Versus-All and One-Versus-One Decision Functions 26
3.3 Review of Studies Predicting Pitch Type Classes 27

3.3.1 Binary Classification Results 28
3.3.2 Multi-Class Classification Results 29
3.3.3 Algorithm Review and General Methodology 30

4 Methods 33
4.1 Data Resources . 33
4.2 Sample and Features . 34
4.3 Random Forest and Support Vector Machine Predictive Mod-

elling . 37
4.3.1 Model Fitting and Hyperparameter Tuning 37

5 Results 41
5.1 Model Results and Comparison 41

5.1.1 Naive Model . 42
5.1.2 Random Forest . 43
5.1.3 Support Vector Machine 46
5.1.4 Overall Results and Comparison 48
5.1.5 Permutation Feature Importance 49

5.2 Discussion of Results . 55
5.2.1 On the Practicality of Pitch Type Prediction Models . 55
5.2.2 Future Work . 56

Bibliography 63

A Building Random Forest Models with a Randomized Grid
Search 64

Vita

v

List of Tables

4.1 Features Used to Predict Pitch Types 36
4.2 RandomForestClassifier() Tuning Options 38
4.3 SVC() Tuning Options . 40

5.1 Random Forest - Pitchers with Greatest Improvement 45
5.2 Support Vector Machine - Pitchers with Greatest Im-

provement . 46
5.3 Model Performance Comparison 48
5.4 Prediction Accuracy Confidence Intervals 49
5.5 Description of Features with Highest PFI 54
5.6 Predictable Pitchers . 55

List of Figures

1.1 Strikeout Percentage Since 2010 3

5.1 Random Forest Prediction Accuracy vs. Naive Pre-
diction Accuracy . 44

5.2 Random Forest - Best Hyperparameter Results from
Cross-Validation . 45

5.3 Support Vector Machine - Best Hyperparameter Re-
sults from Cross-Validation 47

5.4 Mean Permutation Feature Importance 52
5.5 Top 25 Mean Permutation Importance Features 52

vi

Chapter 1

Introduction

In the past, the statistics of Major League Baseball (MLB) were used pri-

marily as a way of recognizing its greatest players. A pitcher that won 20

games in a season was vastly superior to one that only won 10, and a batter

that hit for a .250 average was nowhere near the same class as one that hit

.300. These facts went unchallenged for decades. Bill James [19] was the first

to seriously question this consensus. Modern baseball analytics have done

more than chip away at the old misconceptions. They are changing how the

game is played.

The flow of information in MLB has worked its way to the field of play,

where players and teams are using the current wealth of data to aid in their

decision making. Teams are in search of any advantage they can find. For a

batter, being able to anticipate what type of pitch the pitcher will throw is

invaluable [31]. Before technological advancements made pitch tracking pos-

1

sible, hitters could only give educated guesses at what a pitcher might throw

based on anecdotal evidence. Today, hitters have access to detailed break-

downs describing the tendencies of pitchers: what types of pitches they like

to throw in a given situation, and where they like to throw them. Likewise,

pitchers can see how often hitters swing at different types and locations of

pitches. With both sides seeking to leverage the data, the struggle between

batter and pitcher has become more complicated than ever.

Hitting a baseball is very difficult. Pitchers have learned what hitters struggle

to hit, and have begun striking out batters at an historically high rate (see

Figure 1.1). There are likely several contributing factors to this increase,

with pitchers optimizing their pitch selection strategies being just one of

them. We hope to improve a hitter’s odds by aiding in the prediction of the

next pitch they will see.

Machine learning (ML) offers a number of algorithms to build predictive

classification models. The advantages and issues of specific ML mechanisms

relating to baseball will be a key component of this paper. Chapter 2 ex-

plores the development of statistical methods in baseball and discusses issues

causing complications. The remaining chapters will focus on predicting pitch

classes. Chapter 3 presents a literature review of studies involving pitch type

prediction. Chapter 4 outlines the data and methodologies of classification for

this paper. Two classification methods, random forests and support vector

machines, will be considered for pitch type classification using data provided

from a technology called Statcast. The results of the analysis are shown in

2

Chapter 5, where 244 pitchers are used to build models for prediction.

Figure 1.1: Strikeout Percentage Since 2010

Strikeout rate, which is the percentage of plate appearances ending with a
strikeout, has steadily increased since 2010. This data comes courtesy of
fangraphs.com.

3

Chapter 2

Notes on the Progression of

Baseball Analytics

2.1 Historical Review of Sabermetrics

2.1.1 Rise in the Public Sphere

Bill James challenged many of the beliefs held by baseball teams and fans.

James published his first Baseball Abstract in 1977 and began the task of

subverting historical preconceptions. The field of baseball analysis came to

be known as sabermetrics, a term created by James himself [23].

The practitioners of sabermetrics have become known as sabermetricians.

They have congregated to websites where like-minded fans can share their

research and opinions. Much of the most important baseball analysis is avail-

4

able online on websites such as Fangraphs1 and Baseball Prospectus.2 Saber-

metrics users have formed their own community where anybody with an un-

derstanding of baseball can contribute. They have helped provide historical

revisions by finding new ways of evaluating players and discovering optimal

game strategies. Although many of the early sabermetricians were hobby-

ists, they helped to establish new approaches to playing baseball. Tango,

Lichtman, and Dolphin[29] provided the most comprehensive strategy guide

for MLB games to date, all based on empirical data.

Research has become more focused on forecasting player performance and

predictive analytics. The sabermetrics community has become recognized as

a legitimate source of knowledge. Their interests have begun spilling in to

academic research. This is partially due to the growing barrier in performing

new analysis; as the standard for new research has become higher, so has the

complexity of the predictive modelling.

MLB teams were slow to adopt advanced analytics. The first well-documented

case of a team relying heavily on analytics came in 2003 with the publica-

tion of Moneyball by Lewis [23]. The shift has been gradual but noticeable.

Sabermetrics is now widely practised by professional teams; it also remains

popular in public online communities, which have become proving grounds

for talented researchers. MLB teams have begun hiring their own sabermet-

rics users, many of whom started in the public sphere. It is estimated that

1www.fangraphs.com
2www.baseballprospectus.com

5

MLB clubs like the Los Angeles Dodgers and Chicago Cubs spend $20 million

and $13 million respectively on research and development [30].

2.1.2 An Accumulation of Anecdotes

The implementation of tracking systems have been crucial in the development

of baseball analysis. A tracking system is used to monitor movements of the

baseball. PITCHf/x is a system used to track pitches thrown in MLB games

by captured images from multiple cameras. The technology first appeared in

2006 [1]. The tracking system can measure the velocity, break and position

of each pitch thrown. All this data is used to classify the pitch type using a

neural network.

Statcast replaced PITCHf/x as the official tracking system used by MLB at

the start of the 2017 season. Statcast uses additional cameras to not only

track the ball, but also the individual players on the field [1]. The wealth of

data that PITCHf/x and Statcast have provided allow for more detailed play-

by-play accounts. Prior to the implementation of tracking systems, many of

the characteristic skills of a player were assessed anecdotally. For example,

a team of people with trained eyes can classify a season’s worth of pitches

using video [20]. Further back in time historical records of pitcher tendencies

become more anecdotal. Neyer and James [21] have compiled an invaluable

record of pitcher repertoires; we can see Bob Gibson threw two types of

fastballs, a slider, a curveball, and a changeup. How hard was his fastball?

How often did he throw a slider with two strikes? There is insufficient data to

6

answer these questions for a pitcher of Gibson’s era. In this regard, the study

of pitch sequencing and pitch prediction is a new field of study. MLB teams

are gradually putting less weight on the subjective views of their scouts and

coaches in favor of quantitative analysts [24].

2.2 Machine Learning Research in Baseball

Research in sabermetrics has an impact on how the game is played; it would

be negligent for a team not to incorporate the important results of such

studies in to their overall strategy. Lewis showed that a team is capable of

using sabermetrics to inform their decision-making. In that case, the Oakland

A’s exploited the inefficiencies of MLB by targeting undervalued players and

introduced strategies that were not popular. They acquired batters that

would improve the team’s on-base percentage (essentially they made fewer

outs) and did not emphasize the defensive quality of their team. The Oakland

A’s began using analytics heavily before other teams did. Now every team

is aware of the necessity to incorporate analytics, and the A’s advantage has

dissipated.

The integration of machine learning in sabermetrics seems natural given its

rise to prominence in other research areas. With game data becoming more

widely accessible, sabermetrics users have more flexibility in trying to find

answers to their questions. In their overview of machine learning research in

baseball, Koseler and Stephan [22] found 32 articles which met their criteria.

7

Of those papers, they found the earliest paper relating to classification prob-

lems (binary or multi-class) was written in 2012. It appears that much of the

key machine learning research in baseball is currently coming from academia.

The analytics departments of MLB teams are also likely doing key research

that is unavailable to the public. In both cases, researchers tend to have

academic backgrounds, while also drawing from their knowledge as fans.

Berri and Bradbury [3] note that academics and sabermetrics users have been

able to draw from each others’ work in order to refine their own research.

As sabermetrics users become more acquainted with machine learning tech-

niques, this will likely continue to be the case.

2.2.1 On the Nature of Baseball Statistics

Normally, predictions in sports are dictated by the skills of the players in-

volved. The management of a club is interested in forecasting the perfor-

mance of their club and the players that constitute it. The skill of the club

will largely dictate how many wins it collects, though there are other factors.

Injuries and fluctuations in player performance mean that exact predictions

on overall team performance are difficult. However, a club’s expectations

are based on the ability of its players, and over the course of a season those

abilities tend to reveal themselves. Predictions are based on data that the

club has identified as having some intrinsic relation to the skill of the player.

Data measurements pertaining to player ability improve every year. Rather

than relying on statistics that focus on outcomes (e.g. batting average), the

8

new wave of data is far more descriptive of what is happening on the field.

Whether a batter is successful in reaching base via hit depends partially on

good fortune. In recent years tracking systems have allowed for more intricate

measurements of skill. A batter can display high skill by hitting a ball hard

yet still make an out. Exit velocity, which measures the speed of the ball

off the bat, is a quantitative measure of a batter’s ability to hit a ball with

force.

Sabermetrics users are better equipped than ever to evaluate the underly-

ing factors that determine outcomes on the field due to a growing base of

knowledge. Tango et al. [29] used Markov chains in Chapter 1 to determine

a team’s run expectancy in an inning based on the arrangement of runners

and the number of outs. This combination of runners and outs is known as

the base/out state. Their approach helps provide quantitative value for each

event on the field. Improved data accessibility has also been crucial to deeper

understanding. The PITCHf/x and Statcast tracking systems have enhanced

data quality and accessibility. Sabermetrics users may be better at quanti-

tatively measuring the procedures of a baseball game, but they still must

identify the effect of random fluctuation in player performance to capture

their true skill level.

Sabermetrics users have been aware of the noisiness of baseball statistics for

some time. Fluctuations in player performance make it difficult to measure

a player’s true skill in small sample sizes. Therefore it is beneficial to note

the uncertainty of a statistic, or at least the sample size. Baseball statistics

9

are often presented as measures of skill even when the sample size is not

sufficiently large to support that assertion.

Tango et al. [29] describe a Bayesian approach to capturing player skill in

Chapter 1 of their work. A new player with no history is assumed to be

roughly average until there is data to draw from. When sample sizes are

small it is best not to make any strong assumptions about a player’s ability.

Tango et al. suggest regressing a player’s statistic towards the mean of similar

players. This is done by adding a fixed number of average results to the

player’s statistic so that any prediction of performance is not solely reliant

on what was found in the small sample. As data points become available

the estimates of that player’s skill are updated. The more data there is for a

player, the less regression to the mean is necessary.

Sabermetrics users have learned to incorporate the inherent randomness in

their models rather than ignore it. Consider the discovery that pitchers have

limited control over balls put in play. Pitchers have no control over the abil-

ity of defensive players in converting balls in play to outs. Pitchers play a

part in how hard a ball is struck, but the probability of an out depends on

the skill of the fielders once the ball is contacted by the batter. Separating

the fielding aspect of defense from the pitching aspect has been a crucial

development in evaluating pitchers; whether a ball in play is converted to an

out depends partially on the quality of fielders [32]. This has led to saber-

metrics users focussing on defense-independent pitching statistics (DIPS) to

predict performance because they rely on a pitcher’s skill and not the team’s

10

defense. DIPS have less fluctuation over time, so a pitcher that is skilled in

striking out batters in the early part of the season will likely carry over that

skill later in the year. Other statistics may be dependent on the skill of other

defensive players in converting balls in play to outs. Therefore it is important

to evaluate a pitcher’s performance on aspects within their control.

The most limiting aspect of baseball analysis is undoubtedly related to sam-

ple size. This leads to necessary compromises. Studies that focus on individ-

ual players often require multiple seasons of data. In the literature review

that follows, it will be seen that papers use up to three seasons worth of

data to predict pitch types for individual pitchers. That is a small price to

pay, though, for having more data for a model to learn from. Restrictions on

sample size may also cause systematic bias; injury-prone and lesser-skilled

players wind up being dismissed by many studies.

The major issue with predicting pitch types is the trade-off between assump-

tions in data distribution and sample size. Ideally, multiple seasons of data

are used to build a model. This could be sub-optimal because a pitcher’s ten-

dencies may change over time. It is unrealistic for every pitcher to maintain

the same distribution of data across multiple seasons, thus violating the stan-

dard assumption of independent and identically distributed variables. Would

a pitcher drastically changing their approach from one season to the next be

bad for a predictive model? There may be one advantage in using diverse

data across time. If only recent, homogeneous data is used to construct a

model it may end up being overfit when used on test data. Incorporating

11

cross-validation that separates recent data from older data reduces this ef-

fect; here it seems the advantages of larger training sizes and increased data

diversity mitigate concerns over distribution.

2.3 The Mechanisms of Prediction

Breiman [9] describes the operation of input variables that lead to response

variables as a mechanism. In the specific case of pitch type prediction, the

mechanism is controlled by the pitcher (and to some degree, possibly the

catcher). It is impossible to totally capture the pitcher’s thought-process

with a model, but they will most likely have some historical tendency to

draw on.

Breiman discerns two different approaches to modelling: data modelling and

algorithmic modelling. The former typically fits a parametric model, while

the latter accepts the mechanism as “complex, mysterious, and, at least,

partly unknowable.” [9]. Accepting that some aspects of a mechanism are

unknowable doesn’t preclude discussion of its mechanics. Next, we hope to

elucidate the mechanism of certain machine learning algorithms and their

relationship to baseball. Complications specific to the pitch type prediction

mechanism are also examined.

12

2.3.1 Bagging, Randomization and their Effects on Data

Structures

Bagging (Bootstrap Aggregating) was introduced by Breiman [7] and is

known as an ensemble method. Ensemble methods combine M algorithms

for the purpose of improving specific aspects of a predictive model. Bagging

is particularly effective for reducing variance.

Let a training set L be made up of data {(yn,xn), n = 1, ..., N} and let

the predictor with inputs x be ϕ(x,L). For the classification task, ϕ(x,L)

predicts a class j ∈ {1, ...J}. Taking from the distribution of L , bagging

seeks to simulate a sequence of training sets Lk through bootstrapped sam-

ples denoted by {L B}. Each bootstrapped sample forms a prediction for

the class. The sequence of predictors ϕ(x,L B) vote to form the bagged

predictor ϕ(B)(x). The most common class from voting ends up being the

prediction.

Bagging is just one form of randomization. There are other randomization

mechanisms to further improve machine learning tasks. In random forests,

the randomization comes in the form of feature usage. Not every feature is

used for each bagging iteration. Multiple classification trees are grown, each

with a different subset of the features used to grow the trees. Randomization

in this manner helps to alleviate the correlation between trees that exists

with bagging. Although the bagged trees are identically distributed, they

are not independent. According to Goldstein et al. [15], if the variance of

13

each tree is σ2, the correlation between predictions is ρ, and B is the number

of bootstrapped replicates, then the variance of the bootstrapped averages

is:

ρσ2 +
1− ρ
B

σ2

As B becomes larger, the variance becomes increasingly reliant on the cor-

relation between trees. As a result bagging becomes less effective as the size

of the data grows. By selectively using subsets of features for each iterated

tree in the random forest, the correlation is reduced, thereby also decreasing

the variance.

It should be noted that models to predict pitch types inherently violate the

assumption that data is independent. A pitcher does not decide which pitch

to throw independent of what was thrown previously. They factor in the

sequence of pitches when making their choice, essentially creating temporal

dependency. Randomization can complicate time-dependent learning tasks

if the structure of the predictor ϕ(x,L) is perturbed. Suppose a predictor

with a time-dependent structure is given by ϕ(x(t),x(t− 1), ...,L) at time

t [2]. A process such as bagging could affect the temporal relationship of

the predictor since the sample is bootstrapped. The study to be performed

later in this paper captures the time-dependency of pitch type prediction

by including features describing previous pitches (e.g. previous pitch type,

previous pitch velocity, etc.).

14

2.3.2 Game Theory Considerations in Pitching

The interaction between pitcher and batter is an element of baseball that

has only recently been studied extensively. Sabermetrics users have shown

the capacity to extrapolate player abilities from data. However, they are still

learning to describe the relationship between the respective skills of pitchers

and batters. What if the nature of the prediction is not strictly related to

skill? Again, consider the task of predicting pitch types. The underlying

structure of a pitcher’s decision-making processes is not usually obvious, in

part because it benefits a pitcher not to be. A pitcher does their best to

be unpredictable. The challenge becomes identifying the conscious decision-

making tendencies of a player rather than their measurable talent.

One of the difficult aspects in predicting pitch types is the inherent game-

within-a-game played between pitcher and batter. Game theory would sug-

gest that a pitcher should have a mix of pitches to avoid becoming pre-

dictable. Tango et al. [29] note in Chapter 12 the necessity for pitchers to

randomly change up their pitch selection strategies. This means generally

that they should avoid throwing one pitch exclusively. Regardless of how

well a model is able to learn the historical tendencies of a pitcher in a given

game situation, there will likely be some unforeseen strategy taken by the

pitcher in the future.

The game theory aspect of the batter-pitcher confrontation makes predictive

modelling more difficult. A majority of pitchers are undoubtedly wary of

becoming predictable in given game situations with given batters. Thus they

15

end up avoiding their preferred choice for the sake of confusing the batter.

This should have the effect of producing a mapping from inputs to outputs

that is non-deterministic. Put another way, a pitcher behaving one way in

a training set at time t1 will not necessarily do the same again at time t2 in

the test set, even with the same inputs. Ideally, the training set will capture

the diversity of the pitcher’s decision-making. If the model becomes overfit

it may end up disregarding their willingness to try different pitch types.

16

Chapter 3

Literature Review

Various types of machine learning methods are available to be used in clas-

sification problems, many of which are relatively new forms of data analysis.

Two types of machine learning models will be considered here to predict

pitch types: random forests and support vector machines. They are popular

model types that have been used in other studies regarding pitch type pre-

diction. Our results, which make use of Statcast data, will be compared to

these studies that use data from other tracking systems.

3.1 Random Forests

Classification and Regression Tree (CART) models serve as the basis for

random forests. While CART models are simple and interpretable, random

forests are more difficult to interpret [4]. However, in high dimensional data

17

sets, random forests improve on CART methods by combining numerous

models to find a stabilizing model.

3.1.1 CART

Nodes are where the splits of classification and regression trees are made;

CART methods partition data with binary splits at each decision node. Trees

require a split at each node into smaller parts until a terminal node, or leaf,

is reached. Splitting based on node impurity is a common tactic in this

instance. In classification trees, impure nodes have a greater mix of classes

than pure nodes. Completely pure nodes are made up of one class entirely.

A purer subset of an impure node can be created by splitting it. The Gini

diversity index (GDI) described by Breiman [10] splits based on the greatest

reduction in node impurity. The probability of an object being in class j at

node t is denoted by p(j|t), and the sample variance is (p(j|t))(1 − p(j|t)).

If there are J total classes, the sum of the variances for all classes yields the

formula for the GDI, which is:

GDI = 1−
J∑

j=1

p2(j|t)

The nodes of the tree are split to maximize the reduction in node impurity

given by the GDI formula. After finding the feature that is the best to split

on, the splitting criteria that best reduces node impurity is used to build the

following child node. The GDI criterion is generally recognized as a superior

18

splitting criterion to alternatives such as the twoing method, which does not

split based on node impurity [10].

Classification and regression trees are grown until they reach some pre-

determined stopping condition. This causes the resulting tree to be overfit

and thus causes high variance. In the case of overfitting, the CART model

should then be pruned. Pruning iteratively removes splits of the tree based

on the minimization of the cost-complexity function:

Ra(T) = R(T) + a|T |

where R(T) is the cost of the tree in the training sample, |T | is the number

of terminal nodes in the tree, and a is a hyperparameter to be tuned [33].

The cost function R(T) measures the performance of the model on the given

training data. Naturally, the classification rate on the trained model will

be better if the tree is larger. The complexity term |T | penalizes the model

for overfitting. The value of a begins at 0 and gradually increases with each

iteration to remove splits which contribute the least to the reduction of R(T).

If there are b iterations of tuning, a series of subtrees T1 ⊆ Tb−1 ⊆ Tb will be

generated.

3.1.2 Random Forest Algorithm

Random forests are an ensemble method of learning first implemented by

Breiman [8]. A large number of decision trees are grown for each model, and

19

all of them are distinct bootstrap samples. Each tree that is grown is left

unpruned, which causes the trees to have high variance. A random group

of inputs xm are used to grow tree Tm. If there are p total features, then

there will be F ≤ p features selected for each candidate split of Tm. The

features are selected at random for each split. This injects randomization

in to the model that reduces the correlation between trees. Without it, the

good predictors would be used repeatedly in each tree. Combined, bagging

and random feature grouping help to reduce variance.

Breiman introduces the idea of bagging with replacement in a random forest,

a process whereby a random bootstrap sample of the training data is used to

grow each tree. As mentioned in Chapter 2, bagging reduces the variance of

the model. Bagging has the added advantage of withholding approximately

one-third of the objects in each bootstrap sample, which in turn can be used

to find the out-of-bag error rate. The out-of-bag error rate is found by using

these withheld objects (again, about one-third of the whole training set)

in each sample to find the error for each tree that has been grown. This

essentially allows each random forest a built-in set to test on.

In the case of classification problems, the result is determined by tallying up

the most popular class from the ensemble of trees, of which we say there are

M . Each tree votes for a class, and the class with the most votes ends up

being the prediction of the random forest algorithm.

Breiman showed that random forests do not become overfit as the number of

trees M increases. As a result, M can generally be increased to improve pre-

20

dictive power. The other parameters of the random forest algorithm require

tuning on training data. Good starting points for random forest parameters

are discussed in the next section.

3.1.3 Random Forest Parameters

The number of features F used at each split in a random forest depends on

the problem at hand. However, in a data set with p total features Breiman [8]

suggests using F =
√
p features for each split in the model. The value of F

should be found through tuning. Ideally, random feature selection balances

the strength of a full model having all features with the improvement gleaned

by lower correlation between trees.

There are several parameters to consider in the random forest model in ad-

dition to M and F . The number of points or objects used in each bootstrap

sample is represented by A. The value of A is typically set to the number

of total objects in the training set n, as demonstrated by Breiman [8]. The

minimum node size N controls when construction of each tree is complete.

Once all nodes do not contain more than N points, tree fitting is terminated.

There is no standard set of procedures for tuning the parameters of a random

forest model. There are, however, some suggested values for each of the

parameters for classification problems in the machine learning literature. A

larger M value decreases the variance of the model and therefore improves

the predictive power of the model. The aim in tuning M should be to build

the model to a point where prediction accuracy does not fluctuate [4]. In

21

effect, we are looking for a minimum M to obtain stable predictions while

limiting the computational burden.

Dı́az-Uriarte and Alvarez de Andrés [13] found that the difference between

minimum node sizes N of 1 and 5 was insignificant for a classification prob-

lem involving a classification problem based on gene selection and settled on

N = 1 since using 5 only caused an inconsequential improvement in comput-

ing speed. The randomForest package in R and the RandomForestClassifier

model in the scikit-learn library in Python both use N = 1 as a default for

classification problems.

In classification problems, it is recommended to use a smaller F to reduce cor-

relation and increase predictive power, as mentioned previously by Breiman

[8]. The choice of F =
√
p, where F is rounded down to the nearest whole

number, is often the default value for classification problems. The random-

Forest package in R and the RandomForestClassifier model builder in the

scikit-learn library in Python both currently use this number as a default.

3.2 Support Vector Machines

Support vector machines (denoted by SVM) are a flexible type of learning

method with applications as a classifier. SVM models require no assumptions

about the distribution of the data they are trained on. The use of SVM

models sacrifices simplicity and interpretability for flexibility.

22

3.2.1 Support Vector Machine Algorithm: C-SVC

The fundamental details of non-linear SVMs were shown by Boser et al. [6].

The algorithm aims to generate one or more hyperplanes that maximizes

the margin between two sets of classes. Non-linear SVMs may be linear in

their parameters but need not be linear in their dependency on the input

components. Cortes and Vapnik [12] also presented key developments in the

algorithm by introducing a method to apply the SVM algorithm to data that

is linearly non-separable with the use of a soft margin. A penalty term C is

introduced to reduce the margins in this case. The following support vector

classifier is denoted as C-SVC by Chang and Lin [11].

Let (xixixi, yi), 1 ≤ i ≤ N be a set of training data. The pairs (xixixi, yi) take

the form y ∈
{
− 1, 1

}
and xixixi ∈ Rd with d dimensions and N objects.

The value of y indicates which class the object belongs to. A basic support

vector machine may only separate two classes. In cases with greater than two

classes the separation between each class is handled differently. The methods

of separation will be discussed in the sections that follow.

The support vector machine minimizes the function

τ(www, ε) =
1

2
www·www + C

l∑
i=1

εi (3.1)

subject to the constraints

εi ≥ 0, i = 1, ..., l

23

yi(www·φ(xixixi) + b) ≥ 1− εi

C is a regularization parameter that is subject to tuning and must satisfy

C ≥ 0. φ is a mapping function that projects xixixi in to higher-dimensional

space in zi. The zizizi are the titular support vectors that are close to the

separating hyperplane. The values αi are used to give the optimal vector www

satisfying

www =
l∑

i=1

yiαizizizi

by way of the Kuhn-Tucker theorem [27].

The αi values are found through quadratic programming by maximizing

W (α) =
N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyj(zi· zjzi· zjzi· zj)

with constraints

0 ≤ αi ≤ C, i = 1, ..., l

l∑
i=1

αiyi = 0

The decision function will ultimately become

f(xxx) = sgn

(N∑
i=1

αiyi· (z· ziz· ziz· zi) + b

)

24

3.2.2 Kernels

In certain feature spaces and image mappings, generating an appropriate

linear hyperplane can be nearly impossible. Kernel functions allow for com-

putation of a scalar product in the feature space, essentially generating a

non-linear classifier from a linear algorithm [25]. The non-linear boundary

is mapped to the feature space as a linear decision boundary, effectively in-

troducing a hyperplane. Among the most commonly used kernel functions

are the Gaussian radial basis function (RBF), the sigmoidal function, and

the polynomial function. The radial basis function creates a margin that

encloses a class in the input space, with the other class outside its bounds.

The centers, or support vectors, of both the enclosed and outer classes in

the input space are those objects which are important in regulating the clas-

sification process [27]. Different kernel functions have been shown to share

most of the same support vectors in various data sets. For the kernel function

K(xxx,xixixi) = φ(xxx)·φ(xixixi), the decision function to use for classification is

f(xxx) = sgn

(N∑
i=1

αiyi·K(xxx,xixixi) + b

)
with constraints

0 ≥ αi

N∑
i=1

αiyi = 0

The RBF kernel is a reasonable starting function to consider. This is because

25

of its relative simplicity compared to the polynomial kernel (there are few

parameters to tune) and because of the similarities it has with the sigmoidal

kernel under certain parameters [17]. The kernel takes the form

K(xixixi,xjxjxj) = exp(−γ||xixixi −xjxjxj ||2), γ > 0.

C and γ are the parameters to consider while tuning the RBF kernel. Recall

that C is a regularization parameter in Equation 3.1.

3.2.3 One-Versus-All and One-Versus-One Decision Func-

tions

A support vector machine is capable of separating two classes in its basic

form. In cases with more than two classes, the hyperplane must be generated

using a method that separates points differently. In the multi-class case the

SVM is typically run in one of two ways: either a one-versus-all or a one-

versus-one method. With k classes, the one-versus-all structure builds k

support vector machines. The i-th class (where i ∈ {1, 2. . . , k}) has its own

SVM built, which labels points matching i as positive and labels that do not

match i as negative. The SVM is then constructed as it would be in the

binary case, where the inputs are mapped to a higher dimensional feature

space by an image function and each class is split up by a hyperplane. After

building k decision functions, the input point is assigned its class based on

the decision function. Note that the decision function here assigns class based

26

on the largest value rather than the sign of the function.

The one-versus-one method builds SVMs that are trained on data from two

different classes. Every class gets an SVM built against all other classes. Once

the decision functions are built, the input is passed through each one and

the best class in each direct comparison is found. Since direct comparisons

between two classes are being done, the binary decision function is once

again based on sign. After all the decision functions have voted, the input is

assigned to the class with the most votes [18].

3.3 Review of Studies Predicting Pitch Type

Classes

Research involving pitch type prediction has previously been focused on two

cases. The two types are binary and multi-class models. The binary classi-

fication task usually seeks to predict whether a pitcher will throw a fastball

or non-fastball, also known as an off-speed pitch. For multi-class prediction,

a larger selection of the pitcher’s repertoire is considered. The response for

pitcher u will take the form yi ∈ {1, ..., T}, where T is the number of pitch

types under consideration. Pitchers do not all throw the same pitch types.

If all of a pitcher’s unique pitch types are being predicted, then T will vary

from one pitcher to another.

A näıve model has been commonly used as a baseline of comparison for

both binary and multi-class pitch prediction. The näıve model used for the

27

multi-class case by Sidle and Tran [28] follows a similar method to one used

for binary classification by Ganeshapillai and Guttag [14]. Sidle and Tran

determined which pitch was most frequent for a given pitcher in their training

set. They then found the naive prediction accuracy PNi
for pitcher i on

the test set. For example if pitch type j was the most common pitch in

the training set, then PNi
would be the proportion of pitches of type j in

the test set. From the batter’s perspective, this is akin to anticipating a

pitcher’s preferred type of pitch. It is entirely possible that when facing

certain pitchers this is a reasonable strategy, particularly if the pitcher throws

one type of pitch predominantly.

3.3.1 Binary Classification Results

In the binary case, machine learning techniques are used to split the classi-

fication between fastballs and non-fastballs. Ganeshapillai and Guttag [14]

built support vector machine models to predict fastballs and non-fastballs

for pitchers that had thrown over 300 pitches in both the 2008 and 2009

MLB seasons. They achieved a correct classification rate of 70% with these

models. The support vector machine models used by Ganeshapillai and Gut-

tag significantly improved on näıve models based on a pitcher’s prior pitch

probability. The average improvement was 18% for each individual pitcher.

This particular measurement is reported as a percentage change.

Hamilton et al. [16] trained on 2008 season data and tested on 2009 season

data with an overall prediction accuracy of 77.45% and an average improve-

28

ment of 20.85% over the näıve model for pitchers with over 750 pitches in

both seasons. SVM models with linear and Gaussian RBF kernels were used,

along with k-nearest neighbours. This study did not fit models with a fixed

set of features, but rather used an adaptive set of features that changed for

each pitcher. Significance testing was done for each feature to determine if

it should be kept in the model. The data set was also partitioned by pitcher

and count so that models were built for each pitcher in a given count.

3.3.2 Multi-Class Classification Results

In the multi-class case, Sidle and Tran [28] used linear discriminant analysis,

support vector machines, and random forests to make predictions on seven

different pitch types for pitchers with over 500 pitches in both the 2014 and

2015 seasons. PITCHf/x data from MLB Advanced Media was used for

all seasons included in the study. In total, 287 pitchers met the criterion for

inclusion in the analyses. Not all pitchers had the same set of variables in the

study since not all pitchers threw all seven pitch types. The average number

of variables for a pitcher was 81, and the most was 103. Random forests

with 100 classification trees were the most successful, having an accuracy of

66.62% and an average improvement of 12.24% over the näıve guess.

Bock [5] made use of a support vector machine to separately compute pre-

dictability for each pitch type. The data was taken from 2011 to 2013. Only

pitchers with 1000 pitches in total over the three seasons were included. The

study predicted a pitcher’s four most common pitch types and used a lim-

29

ited out-of-sample test set made up of pitches from the 2013 World Series.

The model was primarily evaluated 5-fold cross-validation results by taking

a weighted average of the prediction accuracy from each slice of data.

3.3.3 Algorithm Review and General Methodology

Previous studies using binary and multi-class pitch prediction were able to

improve on näıve models by using machine learning methods. The studies

mentioned previously all used different sets of variables for their models,

though there was some overlap. Each study used basic situational game

information, including: inning, half inning (top or bottom), outs, count,

location of baserunners, and score. Sidle and Tran [28] incorporated variables

to measure the tendency of a pitcher to throw each of their different pitch

types under various game scenarios. The historical percentage of each pitch

type thrown by a pitcher was one such measure of tendency. Other measures

of tendency were more granular, such as the historical pitch type tendency

of a pitcher against the current batter or the pitcher’s tendency in more

recent pitches. Detailed pitch information measured by PITCHf/x was used

to generate variables based on the prior pitch. Their study also included

variables with data specific to the tendencies of the batter the pitcher was

facing when the pitch was thrown.

The support vector machine model used by Sidle and Tran [28] employed a

radial basis kernel function that uses the one-versus-one method of compar-

ison. The random forest classifier they employed comes from MATLAB and

30

uses the GDI to determine node impurity. This appears to be the only study

using random forests as a means of pitch prediction. Each tree generated in

the random forest attempted to find the variables that best split the node

by maximizing the decrease in impurity at each step. After the appropriate

variable to split on is determined at each node, the best splitting criteria for

that variable is found.

Support vector machines have been used frequently in studies involving pitch

classification. However, those studies have typically been done in binary

classification problems. The work done by Sidle and Tran [28] appears to be

the only study performing extensive pitch prediction modelling in the multi-

class case over a significant period for many pitchers. This study found that

SVMs were not as effective as random forests with 100 classification trees

in predicting pitch types, with average prediction accuracies of 64.49% and

66.62% for SVMs and random forests respectively (linear discriminants were

also used and had an average prediction accuracy of 65.08%). Of the 287

random forest models built for each pitcher in the study, 282 had a higher

pitch prediction accuracy than the näıve model for that pitcher. Meanwhile,

251 of the SVM models bettered their näıve model counterparts.

Variable selection was performed by Sidle and Tran [28] as part of the ran-

dom forest model that was built for multi-class pitch prediction. The overall

variable ranking was done by averaging the variable ranking from each ran-

dom forest built for an individual pitcher. Variables containing information

on the game situation were found to be important. Pitch count was found

31

to be the most important predictor. Unsurprisingly, the number of balls and

strikes against a hitter were found to be significant predictors of the upcom-

ing pitch type. The handedness of the batter was also a significant predictor,

which is expected since many pitchers are known to throw a different mix

of pitches depending on whether the batter is left-handed or right-handed.

Variables containing data on the prior pitch were generally found to be useful

as well, suggesting that pitchers can fall into patterns with their sequencing

of pitches.

32

Chapter 4

Methods

Statcast data will be used to predict pitch types from the 2018 MLB season

using models built for each individual pitcher. All variables contain informa-

tion only available before the pitch to be predicted is thrown.

4.1 Data Resources

Major League Baseball Advanced Media (MLBAM) has made PITCHf/x and

Statcast pitch data available to the public through a website called Baseball

Savant, where much of the useful pitch tracking data goes as far back as

2008. It is possible to scrape an entire season’s worth of data through the

web page. With potentially thousands of pitches to analyze over the course of

a season, a pitcher’s abilities and tendencies become more apparent. Statcast

has had calibration problems since the transition away from PITCHf/x. The

33

imperfections of the pitch classification algorithm were noticeable at the start

of the 2017 season [1]. It has since become generally accepted that the

algorithm is accurate, though not flawless.

The data is scraped from the Baseball Savant web page1 using R. A majority

of the code used to scrape the data was written by Petti [26], with modifica-

tions made to account for changing field names and new data fields. The code

returns data for each pitch thrown on a given day and iterates over a range

of dates. All data for the 2017 and 2018 MLB seasons were extracted with

this method. Data was then transferred to a MySQL database for storage.

4.2 Sample and Features

In order to be included in this analysis, a pitcher must have 1000 registered

pitches during the 2017 and 2018 MLB regular seasons. The data is split

in to training and test sets. The training set is made up of pitches thrown

before the 2018 MLB All-Star Game, which was played on July 17, a few

weeks after the halfway point in the season. The test set consists of all

pitches thrown after that date. Due to some occasional data capture issues

with Statcast, some pitches are left without a registered pitch type. Those

pitches are dropped from each pitcher’s sample. This also appears to be the

first study of this nature making use of Statcast rather than PITCHf/x.

Since the purpose of this analysis is to perform multi-class prediction, each

1baseballsavant.mlb.com

34

pitcher’s response yi can take on different values. Suppose a pitcher u has

T unique pitch types in his arsenal. Then the possible response values for

pitcher u are yi ∈ {1, 2, ..., T} for pitch i. The set of features for the i-th

pitch is given by xi. Certain classes of pitches were grouped due to their sim-

ilarities. Statcast data distinguishes between two-seam fastballs and sinkers,

however the two pitch types are essentially the same. Variations of curveballs

were grouped together as well so that standard curveballs, knucklecurves,

and eephus pitches all belong to the same category. The differences between

changeups, splitters, forkballs, and screwballs can also be difficult to delin-

eate, so they were grouped together as off-speed pitches. There are a small

number of pitchers in MLB using a knuckleball, and subsequently no pitcher

qualifying for this study used one. The label codes for each re-grouped pitch

type will be four-seam fastball (1), two-seam fastball (2), cut-fastball (3),

curveball (4), slider (5), and changeup (6).

The features used to predict pitch types can be seen in Table 4.1. Tendency

features measure the usage in percent of a particular pitch type for each

pitcher. For instance, if a pitcher uses a repertoire made up of four different

classes (four-seam fastball, two-seam fastball, slider, and changeup as an

example), then there will be four ‘Pitcher-Batter Tendency’ features for that

pitcher.

Many of the features in Table 4.1 required additional coding to supplement

the Statcast data. Features describing the game state (inning, outs, balls

and strikes, etc.) were mostly baked in to the initial Statcast data. The

35

Table 4.1: Features Used to Predict Pitch Types

Feature Data Type Description

Inning Categorical

Half Inning Binary Top or bottom of inning

Outs Categorical

Balls Categorical

Strikes Categorical

Batter Handedness Binary

Runner on First Binary Flag for runner on first base

Runner on Second Binary Flag for runner on second base

Runner on Third Binary Flag for runner on third base

Score Spread Continuous
Difference in runs between
defensive and offensive teams

Pitch Count Continuous
Number of pitches thrown
by pitcher

Batters Faced Continuous
Number of batters the pitcher
has faced in the game

Infield Fielding Alignment Binary
Alignment can either be
standard or strategic

Previous Pitch Type Categorical Previous pitch to current batter

Previous Pitch Type 2 Categorical
Pitch sequence of previous two
pitches to current batter

Previous Pitch Result Categorical
Possibilities are ball, strike,
or ball put in play

Previous Pitch Location Categorical
Previous pitch location zone
according to Statcast

Previous Pitch Velocity Continuous Velocity measured in m.p.h.

Previous Pitch Spin Rate Continuous Spin rate measured in r.p.m.

Pitcher-Batter Tendency Continuous Tendency to current batter

Previous Five Tendency Continuous

Previous Ten Tendency Continuous

Previous Twenty Tendency Continuous

36

exception would be score differential, which was trivial to calculate.

Features that described the tendencies of the pitcher and hitter were not

present in the scraped Statcast data and necessitated custom code. These

features capture how frequently a pitcher throws a particular pitch. ‘Pitcher-

Batter Tendency’ measures how often a pitcher throws each of their respec-

tive pitches historically against the current batter. Tendency measures for

how often each pitch has been thrown recently in the current game are also

included.

4.3 Random Forest and Support Vector Ma-

chine Predictive Modelling

Random forest and support vector machine models will be created for each

pitcher to predict pitch types. The machine learning library scikit-learn in

Python will be used to help fit these models and find optimal parameters.

First, the models will be fit and tuned. The tuned model will be used on the

test set for each pitcher.

4.3.1 Model Fitting and Hyperparameter Tuning

The random forest model will use cross-validated grid search optimization

to find the best mixture of hyperparameters for each pitcher. A grid search

tries different combinations of hyperparameter values on the training set to

37

find the best model. The number of trees grown for each model will be fixed

at 100. The hyperparameter values to be used for the grid-search in the

RandomForestClassifer() method in scikit-learn are seen in Table 4.2.

The maximum number of features to try in building each tree has a default

value of
√
n features. The value log2(n features) will also be considered,

since preliminary trials suggested it yielded better results in some cases. The

combination of hyperparameters with the highest prediction accuracy in the

cross-validated grid search is taken as the optimal solution. The pertinent

random forest model for each pitcher will be used to evaluate the test set.

The grid search will be randomized. There are four hyperparameters to tune

and 256 possible combinations. The randomized grid search will draw from

a uniform distribution of set values for each hyperparameter. A total of 10

iterations will be run with 5-fold cross-validation being used for each iteration

of the grid search.

Table 4.2: RandomForestClassifier() Tuning Options

Hyperparameter Setting Options

max features sqrt, log2

max depth 70, 80, 90, 100, 110, 120, 130, None

min samples split 2, 5, 10, 15

min samples leaf 1, 2, 4, 6

The hyperparameter max depth is restricts the lengths of the chains of nodes

in each decision tree. The values ofmin samples split andmin samples leaf

place minimum requirements on the number of samples needed to split each

38

node and the samples needed at each leaf (i.e. terminal node). The clas-

sification trees that are grown in the sci-kit learn implementation of the

random forest algorithm are not pruned. The hyperparameters max depth

and min samples split are an alternative to prevent overfitting in a fashion

similar to pruning.

Support vector machines are sensitive to features with mis-matching data

ranges. Features with large numeric ranges dominate features with small

numeric ranges [17]. Due to this the data should be scaled. All data will

standardized based on calculations in the training set. This means the test

set observations will have their features standardized using sample means and

sample standard deviations from the training set. The standardized score zij

for the i-th transformed observation on the j-th feature is given by:

zij =
xij − xj
sj

where xj and sj are the mean and standard deviation of the feature obser-

vations.

The support vector machine models will use a radial basis kernel function

and the decision function will be one-versus-all. The grid search will tune the

C and γ hyperparameters for the SVC() method in scikit-learn. Recall that

C is the soft margin regularization parameter and γ, known as gamma in

sci-kit learn, is the coefficient of the RBF kernel. Ideally both values need to

be tuned to find an optimal combination. Of the 20 possible combinations,

39

10 will be tried for each pitcher. The values for the hyperparameters in the

grid-search are given in Table 4.3.

Table 4.3: SVC() Tuning Options

Hyperparameter Setting Options

C 0.1, 1, 10, 100, 1000

gamma 0.1, 0.01, 0.001, 0.0001

40

Chapter 5

Results

5.1 Model Results and Comparison

There were 244 pitchers included in this study based on the criteria outlined

in the Methods chapter. Three cross-validated models were built for each

pitcher to predict pitch types: a naive model, a random forest model, and a

support vector machine model. Note that random forests and support vector

machines will be referred to as algorithmic models to differentiate them from

the simple naive models being used a baseline comparison.

Recall that the data spans the 2017 and 2018 MLB seasons, and the training

set consists of data from before the All-Star Game in 2018. The test set is

made up of all pitches after the All-Star Game. Each model for a given pitcher

will be judged based on its performance with test data, and specifically how

well it classifies pitches. The prediction accuracy of the algorithmic model

41

for pitcher i on the test data is denoted by PAi
= Ci

Ti
, where Ci is the number

of correct predictions and Ti is the number of total predictions. Similarly, the

prediction accuracy on the test set for the naive model for pitcher i is given

by PNi
. The average prediction accuracy across all K pitchers in a sample

is given by PA =
∑K

i=1 PAi

K
∗ 100. Similarly, the average prediction accuracy

is PN =
∑K

i=1 PNi

K
∗ 100. Imp is the improvement measured as a difference

between PAi
and PNi

. To compare the average improvement (Imp) of the

algorithmic models over the naive models, the difference between PA and PN

will be taken.

5.1.1 Naive Model

The naive model was fashioned after the one found by Sidle and Tran [28].

First, a pitcher’s most used pitch type in the training set was found. Then

the percent usage of that pitch was found in the test set. The average naive

prediction accuracy across all pitchers was PN = 47.87%, which is well below

the value of 54.38 % reported by Sidle and Tran. This is partially due to the

fact that the study being conducted here has more starters than relievers.

This study is comprised mainly of starters. Relievers typically rely on a

smaller repertoire of pitches and will therefore often throw one particular

pitch more frequently than others.

42

5.1.2 Random Forest

Each random forest was made up of 100 classification trees. Tuning was per-

formed to find the best model for each pitcher. The details of the code used

to make predictions using these types of models can be found in Appendix A.

The average prediction accuracy across all pitchers was PA = 51.40%. Over-

all, the random forest models performed better than the naive model. The

random forest prediction accuracy is plotted against the naive prediction ac-

curacy in Figure 5.1 with a 45◦ line. The plot shows that the random forest

model generally has a higher prediction accuracy than the naive model and is

seldom worse. For pitchers with high naive prediction accuracies the random

forests do not offer significant improvement. In these cases, the classes are

imbalanced because a pitcher relies heavily on one pitch type.

The pitchers with the best results from the random forest models can be seen

in Table 5.1. The table is sorted by Imp. Some of the pitchers with large

improvements between the random forest and naive models took noticeably

different approaches in the test set and the training set. For instance, Wade

Miley’s naive model predicted the correct pitch just 8.91% of the time. In

other words, his most common pitch in the training set, which was a two-

seam fastball thrown 27.49% of the time, was only thrown 8.91% of the time

in the test set. In the test set Miley adopted the cut fastball as his most

common pitch, throwing it 44.81% of the time. The random forest model

was able to predict the correct pitch 36.83% of the time despite this change

in approach. To a certain degree the improvement is artificial because a

43

Figure 5.1: Random Forest Prediction Accuracy vs. Naive Predic-
tion Accuracy

batter would also be able to recognize that Miley is throwing his two-seam

fastball less; a batter would eventually begin expecting cut fastballs rather

than naively assuming Miley was following his old patterns. Indeed, many of

the pitchers in Table 5.1 have low PNi
values. The improvement in predictions

with the random forest can be attributed in part to this.

With 244 tuned random forest models (one for each pitcher), it is possible

to examine which hyperparameter values occurred most often. The counts

of the best hyperparameter values are plotted in Figure 5.2. Limiting the

maximum number of features to log2 was often found to produce the best

tuned model. No one particular fixed depth for each tree stood out. Raising

the minimum number of samples above the default value for each split and

44

Table 5.1: Random Forest - Pitchers with Greatest Improvement

Pitcher Size of Training Set PNi
(%) PAi

(%) Imp

A. J. Cole 1405 25.55 60.20 34.65

Wade Miley 3263 8.91 36.83 27.92

James Shields 4034 22.60 47.31 24.71

Felix Hernandez 3116 20.48 43.52 23.04

Matt Harvey 3185 17.17 39.80 22.63

Wandy Peralta 1539 16.67 38.79 22.12

Jesse Chavez 3191 17.53 38.37 20.84

Kyle Hendricks 3963 41.34 60.52 19.18

Jaime Garcia 3514 40.00 58.55 18.55

Raisel Iglesias 1884 26.32 44.42 18.10

each leaf seems to be preferable for these models.

Figure 5.2: Random Forest - Best Hyperparameter Results from
Cross-Validation

45

5.1.3 Support Vector Machine

Support vector machines with radial basis kernel function were fit for each

pitcher. The average prediction accuracy was found to be PA = 50.52%. The

pitchers with the best results from the support vector machine models can

be seen in Table 5.2.

Table 5.2: Support Vector Machine - Pitchers with Greatest Im-
provement

Pitcher Size of Training Set PNi
(%) PAi

(%) Imp

Felix Hernandez 3116 20.48 43.63 23.15

James Shields 4034 22.60 44.97 22.37

Luis Perdomo 3150 32.31 53.28 20.97

Matt Harvey 3185 17.17 36.49 19.32

Kyle Hendricks 3963 41.34 60.52 19.18

Jaime Garcia 3514 40.00 58.18 18.18

Chris Archer 4800 27.73 42.82 15.09

Jakob Junis 3141 32.02 46.85 14.82

Wandy Peralta 1539 16.67 31.21 14.56

Raisel Iglesias 1884 26.32 40.63 14.31

7 of the 10 pitchers with the greatest improvement using the support vec-

tor machines were also among the most improved from random forests. The

average improvement for the random forest models was 23.17% for the 10

pitchers , while for the support vector machine models it was 18.20%. For

pitchers where the algorithmic models performed best, the random forest

models performed better than the support vector machine models in pre-

dictive accuracy. The overall difference between the random forest models

46

and support vector machine models was small. The random forest models

performed slightly better by having a PA that was 0.88% higher than the

support vector machine models. Similar to the random forest models, many

of the pitchers with the highest improvement had low naive model predictive

accuracy.

The counts for the best hyperparameter values from the support vector

machine classifiers can be seen in Figure 5.3. No C value was obviously

preferable to the others, although C = 1 was used for 88 out of 244 pitch-

ers. C=1000 was only used 11 times. Smaller gamma values were gener-

ally better performers, with 171 pitcher models having gamma = 0.0001 or

gamma = 0.001. The other gamma values ended up being used with no

dominant best choice.

Figure 5.3: Support Vector Machine - Best Hyperparameter Results
from Cross-Validation

47

5.1.4 Overall Results and Comparison

The overall results comparing random forest and support vector machine

models are in Table 5.3. The total results are broken out by starter and

reliever. Starters begin the game as the pitcher for their team, while relievers

enter the game after the starter has left. Pitchers were classified as starters or

relievers based on the role where they threw the majority of their innings over

2017 and 2018 according to Fangraphs.com. Overall, 57.8 % of the pitchers

making it in to this study have been classified as starters. The difference in

strategies taken by starters and relievers [29] would seem to make it necessary

to split the results in this manner. Relievers tend to vary their pitch selection

less than starters.

Table 5.3: Model Performance Comparison

Pitcher Type Pitchers PN(%) Measurement RF SVC

Starter

PA(%) 47.51 46.76

141 43.49 Imp 4.02 3.27

Count of PAi
≥ PNi

115 119

Reliever

PA(%) 56.72 55.67

103 53.86 Imp 2.86 1.81

Count of PAi
≥ PNi

81 79

All

PA(%) 51.40 50.52

244 47.87 Imp 3.53 2.65

Count of PAi
≥ PNi

196 198

The relievers were more predictable overall with both the random forest and

support vector machine models. Their average naive prediction accuracy

48

was also over 10 % higher. The random forest and support vector machine

models for the starters showed a greater average improvement over the naive

model than the relievers. The random forest models had a higher PA than

the support vector machine models for starters and relievers. On the other

hand, SVM models had 198 pitchers out-perform or match their naive models,

which was more than the random forests. The 95% confidence intervals for

the prediction accuracy using each type of model can be seen in Table 5.4.

In the naive case, the 244 values of PNi
are used to build normal confidence

intervals for the mean PN . The same approach was taken for the random

forest and support vector machine models using all PAi
to find the confidence

intervals for the mean PA.

Table 5.4: Prediction Accuracy Confidence Intervals

Model 95% Confidence Interval

Naive (46.05, 49.69)

Random Forest (49.98, 52.82)

Support Vector Classifier (48.93, 52.11)

5.1.5 Permutation Feature Importance

It would be useful to know which features are most are most important

in predicting the next pitch. The permutation feature importance (PFI)

method first suggested by Breiman [8] provides a way of doing this. A model

is fit on training data and evaluated with a baseline model score (prediction

accuracy in this case). The training data will remain the same as it was in

49

previous sections for the purpose of this analysis. Let the baseline prediction

accuracy be P . Once a model is fit, data is randomly shuffled in feature

column j so that the order of the values is changed. The values in column

j do not change, only their order does. The model that was fit before on

the training data is used to find prediction accuracy once again, only this

time using the data with the permuted feature. If a feature is important in

predicting the target label, then the decrease in the prediction accuracy will

be larger than if it was unimportant. The difference in the baseline prediction

accuracy and prediction accuracy with permuted data is the permutation

feature importance score. Additionally, each feature is permuted k times so

that the mean of the k prediction accuracies can be used to compare to the

baseline model score. For the purposes of this study K will be set to 10.

Denote the prediction accuracy with permuted feature j on iteration k as

Pjk. We can define the permutation feature importance for feature j as

PFIj = P − 1

K

K∑
k=1

Pjk

The permutation feature importance algorithm is offered in scikit-learn. It

will be used to rank feature importances after fitting random forest models for

91 different pitchers with the same randomized grid search discussed before.

The pitchers selected to be included are primarily starters, as the threshold

for inclusion was 4000 total pitches across 2017 and 2018. Starters have

a larger repertoire of pitches, so by focussing on them this examination of

50

feature importance will place less emphasis on pitchers with overfit predictive

models. The overfitting phenomena is mostly associated with relief pitchers

(see the next section for more on this).

We will calculate the mean permutation feature importance for each feature

across all M=91 pitchers. If pitcher m achieves a permutation feature impor-

tance score of PFImj when j is shuffled, then the mean permutation feature

importance of j will be

PFIj =
1

M

m∑
m=1

PFIjm

.

The results for the total mean feature importance can be seen in Figure 5.4.

The categorical features are dummy encoded so that each level is assigned as

its own feature. This has the effect of splitting up the overall importance of

the feature in to its constituent parts. After encoding them in this manner

there are 138 total features. Figure 5.4 ranks all 138 of them.

Figure 5.4 shows that a number of features have small mean permutation

feature importances when averaged across 91 pitchers. To display the features

which were important, we will zoom in on those ranked in the top 25. The

features can be seen in Figure 5.5.

The coding used for the feature names that appear in Figure 5.5 may be

difficult to recognize. To translate the coding in Python in to something

more understandable, refer to Table 5.5. Recall that these features originally

51

Figure 5.4: Mean Permutation Feature Importance

Figure 5.5: Top 25 Mean Permutation Importance Features

52

appeared in Table 4.1. Notice that the coding names for categorical and

binary features in Table 4.1 differ from those in Figure 5.5. The coding

names in Figure 5.5 have the category appended to the end of the feature

where it applies. For instance ‘prev pitch seq 2 nanSL’ is a dummy feature

indicating what the previous two pitches in the plate appearance were. In

that case, ‘nan’ means there was no pitch to the current batter two pitches

ago. The pitcher has only thrown one pitch in the current plate appearance,

which was a slider (‘SL’).

The features that are most important capture what a pitcher has done re-

cently in the game. This is expected. A pitcher’s strategy is known to depend

on the sequence of pitches to the current batter. The tendency of pitchers

beyond their previous two pitches is also important. In terms of continuous

numerical features, the pitchers’ tendencies in the previous five, ten, and

twenty pitches are predictive as well. Pitch count is another numerical pre-

dictor with notable importance because a pitcher may alter their strategy as

the game goes along.

53

Table 5.5: Description of Features with Highest PFI

Coding Data Type Description

prev pitch seq 2 Categorical
Previous two types of pitches
in plate appearance

ten FC tendency Numerical
Percentage of cut fastballs in
previous ten pitches

twenty FC tendency Numerical
Percentage of cut fastballs in
previous twenty pitches

five CU tendency Numerical
Percentage of curveballs in
previous five pitches

ten FF tendency Numerical
Percentage of four-seam fastballs in
previous ten pitches

prev pitch loc Categorical Previous pitch location in strike zone

five SL tendency Numerical
Percentage of sliders in
previous five pitches

ten CU tendency Numerical
Percentage of curveballs in
previous ten pitches

ten FT tendency Numerical
Percentage of two-seam fastballs in
previous ten pitches

inning Categorical Inning of the game

inning topbot Binary Top or bottom of inning

pitch count Numerical Number of pitches thrown in game

54

5.2 Discussion of Results

5.2.1 On the Practicality of Pitch Type Prediction Mod-

els

The question should be raised: how useful is it to build models predicting

pitch classes? The applicability of these predictions rely largely on the pitch-

ers they are being used on. For pitchers that use one pitch predominantly,

algorithmic models seem to offer diminishing returns over the naive model.

This is particularly true for relievers. The models become overfit and naively

assume a pitcher will throw their dominant pitch. This sort of problem is

common with data that has class imbalance. Random forest results for some

notable relievers that are especially predictable can be seen in Table 5.6.

The prediction accuracy of the random forest model PAi
is the same as the

naive model’s PNi
for each pitcher. In these cases, the random forests naively

predicts a pitcher’s favoured pitch.

Table 5.6: Predictable Pitchers

Pitcher PNi
(%) PAi

(%)

Bryan Shaw 91.58 91.58

Jake McGee 84.49 84.49

Chad Green 83.33 83.33

Kenley Jansen 81.53 81.53

Josh Hader 77.41 77.41

Starting pitchers had a greater improvement in their algorithmic model pre-

55

diction accuracy than relievers did. Starters generally use their mix of pitches

more situationally, which an algorithmic model is able to pick up on (i.e. they

have pitches that are used in specific game scenarios). Situations where the

pitch classes are imbalanced such as we see in Table 5.5 require different

treatments if we wish to have better predictions of the minority classes.

The biggest constraint in predictive pitch type modelling is sample size. This

study, and others like it, require pitchers to have thrown hundreds of tracked

pitches. In reality, a large portion of pitches thrown in MLB come from

pitchers with limited data attached to them. Constructing predictive models

in those cases may not be productive and further reduces how broadly these

sorts of models should be employed.

5.2.2 Future Work

All of the preceding analyses has been done under the assumption that Stat-

cast data is accurate in its measurements. However, there is some chance

that sections of the Statcast data are not calibrated correctly, or at least

differently from PITCHf/x data. Sidle and Tran [28] used PITCHf/x data

for their analysis. The potential calibration issues of Statcast were noted by

Arthur [1]. The difference between the results here and those found by Sidle

and Tran could in part be due to differences in tracking systems. In addition,

only two full seasons of Statcast data were available at the undertaking of

this study compared to the three they used.

Statcast takes the measurements of each pitch and uses a neural network

56

to classify the pitch. The details of the neural network are not made pub-

lic, therefore it is unclear exactly how pitches are classified. The algorithm

originally used by PITCHf/x was tweaked and improved over time. PITCH-

f/x used to attach a confidence number to the algorithm so it could identify

which pitches were difficult to classify. It appears Statcast does not offer the

same thing. The work of Sidle and Tran only included pitches that could be

classified with 80% confidence. This is the confidence the classification algo-

rithm has in being correct, and not a confidence level. Ultimately, the exact

differences between the PITCHf/x and Statcast classifiers remain uncertain.

Due to the possible issues with Statcast’s classification algorithm, it seems

reasonable to explore other methods of grouping pitches. That would involve

either re-classifying the data with a new algorithm or adjusting the existing

data. The adjustment could come in the form of systematically removing

pitches with questionable values associated with them (e.g. pitches with

aberrant velocity or movement for their given type).

The grouping of pitch classes should cater to the preferences of the batter.

Binary models which predict whether the next pitch will be a fastball or non-

fastball have higher prediction accuracy than multi-class models. Although a

binary model may not be able to tell a batter which specific pitch is coming,

it could help them strategically rule out particular pitches. Future work

could also be done to reduce the number of features so a batter can focus on

those with strategic significance. Using permutation feature importance, we

know which features may be most predictive. Future models could be built

57

using those important features as a benefit to the batter.

This study does not make any predictions using data gathered after the

delivery of the pitch. Since we are primarily interested in building models to

simulate real game situations, batter and pitcher tendencies only include data

that would be available beforehand to each party. A portion of the predictive

work done by Sidle and Tran uses batter and pitcher tendencies with data

points posterior to the pitch being predicted, although it is done exploratorily

to compare algorithms. This could, in part, explain the differences in results.

Sidle and Tran also include a section where they make predictions in ‘real-

time’ with methods similar to ours. When using these methods, their models

had an overall lower prediction accuracy. The results in that instance were

closer to what we found in this study.

58

References

[1] R. Arthur, Baseball’s new pitch-tracking system is just a bit

outside, https://fivethirtyeight.com/features/baseballs-new-

pitch-tracking-system-is-just-a-bit-outside/, April 28, 2017,

Accessed: 2019-10-29.

[2] Sebastián Basterrech and Andrea Mesa, Bagging technique using tempo-

ral expansion functions, Proceedings of the Fifth International Confer-

ence on Innovations in Bio-Inspired Computing and Applications IBICA

2014 (Cham) (Pavel Kömer, Ajith Abraham, and Václav Snášel, eds.),

Springer International Publishing, 2014, pp. 395–404.

[3] D. J. Berri and J. C. Bradbury, Working in the land of the metricians,

Journal of Sports Economics 11 (2010), no. 1, 29 – 47.

[4] G. Biau and E. Scornet, A random forest guided tour, TEST 25 (2015),

197 – 227.

[5] J. Bock, Pitch sequence complexity and long-term pitcher performance,

Sports 3 (2015), no. 1, 40–55.

59

[6] B. E. Boser, I. M. Guyon, and V. N. Vapnik, A training algorithm for

optimal margin classifiers, Proceedings of the Fifth Annual Workshop

on Computational Learning Theory (New York, NY, USA), COLT ’92,

ACM, 1992, pp. 144–152.

[7] L. Breiman, Bagging predictors, Machine Learning 24 (1996), no. 2,

123–140.

[8] L. Breiman, Random forests, Machine Learning 45 (2001), no. 1, 5–32.

[9] , Statistical modeling: The two cultures, Statistical Science 16

(2001), no. 3, 299 – 215.

[10] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and

regression trees, Wadsworth International Group, Belmont, CA, 1984.

[11] C.C. Chang and C.J. Lin, Libsvm: A library for support vector machines,

ACM Trans. Intell. Syst. Technol. 2 (2011), no. 3, 27:1–27:27.

[12] C. Cortes and V. N. Vapnik, Support vector networks, Machine Learning

20 (1995), 273–297.

[13] R. Dı́az-Uriarte and S. Alvarez de Andrés, Gene selection and classifi-

cation of microarray data using random forest, BMC Bioinformatics 7

(2006), no. 1, 3.

[14] G. Ganeshapillai and J. V. Guttag, Predicting the next pitch, MIT Sloan

Sports Analytics Conference, 2012.

60

[15] Benjamin Goldstein, Eric Polley, and Farren Briggs, Random forests

for genetic association studies, Statistical Applications in Genetics and

Molecular Biology 10 (2011), 32–32.

[16] P. Hoang, M. Hamilton, H. Tran, J. Murray, C. Stafford, L. Layne, and

D. Padget, Applying machine learning techniques to baseball pitch pre-

diction, International Conference on Pattern Recognition Applications

and Methods, 01 2014.

[17] C.-W. Hsu, C.C. Chang, and C.-J. Lin, A practical guide to support

vector classification, Tech. report, Department of Computer Science,

National Taiwan University, 2003.

[18] C.-W. Hsu and C.-J. Lin, A comparison of methods for multiclass sup-

port vector machines, IEEE Transactions on Neural Networks 13 (2002),

no. 2, 415–425.

[19] B. James, The new Bill James historical baseball abstract (first Free

Press trade paperback edition), Free Press, New York, NY, 2003.

[20] , The Bill James handbook 2012, Acta Sports, Chicago, IL, 2011.

[21] B. James and R. Neyer, The Neyer/James guide to pitchers, Fireside,

New York, NY, 2004.

[22] K. Koseler and M. Stephan, Machine learning applications in baseball:

A systematic literature review, Applied Artificial Intelligence 31 (2018),

no. 9 - 10, 745 – 763.

61

[23] M. Lewis, Moneyball, W.W. Norton & Company Ltd., New York, NY,

2004.

[24] B. Lindbergh and T. Sawchik, The MVP machine, first ed., Basic Books,

New York, NY, 2019.

[25] K. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf, An introduc-

tion to kernel-based learning algorithms, IEEE Transactions on Neural

Networks 12 (2001), no. 2, 181–201.

[26] B. Petti, How to build a Statcast database from BaseballSa-

vant, https://billpetti.github.io/2018-02-19-build-statcast-

database-rstats/, Accessed: 2020-03-02.

[27] B. Scholkopf, Kah-Kay Sung, Christopher Burges, Federico Girosi,

Partha Niyogi, Tomaso Poggio, and Vladimir Vapnik, Comparing sup-

port vector machines with Gaussian kernels to radial basis function clas-

sifiers, Signal Processing, IEEE Transactions on 45 (1997), 2758 – 2765.

[28] G. Sidle and H. Tran, Using multi-class classification methods to predict

baseball pitch types, Journal of Sports Analytics 4 (2017), 1–9.

[29] T.M. Tango, M.G. Lichtman, and A.E. Dolphin, The book, Potomac

Books, Inc., Dulles, VA, 2007.

[30] T. Verducci, Seeing is believing, Sports Illustrated 130, no. 6, 44–54.

62

[31] T. Williams and J. Underwood, The science of hitting (revised Fireside

edition), Simon & Schuster, Inc., New York, NY, 1986.

[32] K. Woolner and D. Perry, Why are pitchers so unpredictable?, Baseball

Between the Numbers (J. Keri, ed.), Basic Books, New York, York, 2007,

pp. 48–57.

[33] Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang

Yang, Hiroshi Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu,

Philip S. Yu, Zhi-Hua Zhou, Michael Steinbach, David J. Hand, and

Dan Steinberg, Top 10 algorithms in data mining, Knowledge and In-

formation Systems 14 (2008), no. 1, 1–37.

63

Appendix A

Building Random Forest

Models with a Randomized

Grid Search

The coding language used to perform analysis in this study was Python.

The predictive models were fit with algorithms from the scikit-learn library.

The code that follows in this appendix outlines the implementation of a

random forest model with randomized grid search for hyperparameter tuning.

The full list of packages and libraries used to perform this analysis can be

loaded with the code that follows. This list includes packages not used in

the appendix. However, they were used elsewhere over the course of this

study. Interested parties are encouraged to research the documentation of

these libraries and packages.

64

import mysql . connector

import pandas as pd

import numpy as np

from s t a t i s t i c s import mean

from s k l e a rn import metr i c s

from s k l e a rn . ensemble import RandomForestClass i f i e r

from s k l e a rn . svm import SVC

from s k l e a rn import t ree , p r ep r o c e s s i n g

from s k l e a rn . p r ep r o c e s s i ng import LabelEncoder

from s k l e a rn . impute import SimpleImputer

from s k l e a rn . m o d e l s e l e c t i o n import RandomizedSearchCV

from s k l e a rn . i n s p e c t i o n import permutat ion importance

The random forest model for each pitcher is built using a number of vari-

ables. Suppose that data is a dataframe of features that can be used to make

predictions about what the next pitch will be. The column of y values that

we would like to predict is labelled ‘adj pitch type’ and represents the type of

pitch thrown in that instance. The ‘game date’ column represents the date

the game was played and will be dropped after parsing the data appropri-

ately. Games after July 17, 2018 will make up the test set. The All-Star

Game was held on that date in 2018.

#Sort games by date

data = data . s o r t v a l u e s (by=[’ game date ’])

65

#S p l i t up data in to t r a i n and t e s t s e t

X tra in = data . l o c [data [’ game date ’] <= ’2018−07−17 ’ ,\

data . columns != ’ a d j p i t c h t y p e ’]

X tes t = data . l o c [data [’ game date ’] > ’ 2018−07−17 ’ ,\

data . columns != ’ a d j p i t c h t y p e ’]

#The ‘ game date ’ column i s dropped

X tra in . drop ([’ game date ’] , a x i s =1, i n p l a c e=True)

X tes t . drop ([’ game date ’] , a x i s =1, i n p l a c e=True)

y t r a i n =\

data . l o c [data [’ game date ’] <= ’2018−07−17 ’ , [’ a d j p i t c h t y p e ’]]

y t e s t =\

data . l o c [data [’ game date ’] > ’ 2018−07−17 ’ , [’ a d j p i t c h t y p e ’]]

#Convert t r a i n i n g and t e s t s e t s to arrays

X tra in = np . array (X tra in)

X tes t = np . array (X tes t)

y t r a i n = np . array (y t r a i n)

y t e s t = np . array (y t e s t)

66

There must be a grid of options for the randomized search to work on. The

grid used for the random forest model can be seen below, with all values tried

for each hyperparameter.

#Create g r i d o f o p t i o n s f o r g r i d search

n e s t imato r s = [1 0 0]

max features = [’ auto ’ , ’ l og2 ’]

max depth = [70 , 80 , 90 , 100 , 110 ,120 , 130]

max depth . append (None)

m i n s a m p l e s s p l i t = [2 , 5 , 1 0 , 1 5]

m in samp l e s l ea f = [1 , 2 , 4 , 6]

g r i d = { ’ n e s t imato r s ’ : n e s t imator s ,

’ max features ’ : max features ,

’ max depth ’ : max depth ,

’ m i n s a m p l e s s p l i t ’ : m in samp le s sp l i t ,

’ m in samp l e s l ea f ’ : m in samp l e s l ea f }

Predictions will be made using a random forest model. The model will try

10 combinations from the options listed in the grid and select the best one.

The combination of parameters with the highest correct classification rate

on the training data will be selected as the best model.

#Create random f o r e s t

r f = RandomForestClass i f i e r (random state =42)

67

#Random search o f parameters ,

#us ing 5 f o l d c r o s s v a l i d a t i o n ,

#search across 10 d i f f e r e n t combinations ,

#and use a l l a v a i l a b l e cores

rf random = RandomizedSearchCV (es t imator = r f ,

pa ram d i s t r i bu t i on s = grid ,

n i t e r= 10 ,

cv =5,

random state=24

verbose =2,

n jobs = −1)

#Fit the random search model

rf random . f i t (X train , y t r a i n)

#Extrac t model wi th b e s t r e s u l t s

#The b e s t model has the h i g h e s t c o r r e c t c l a s s i f i c a t i o n r a t e

b e s t g r i d = rf random . b e s t e s t i m a t o r

#Make p r e d i c t i o n s us ing t e s t data

y b e s t p r e d r f = b e s t g r i d . p r e d i c t (X tes t)

This method of prediction was repeated for each pitcher. Similar code was

68

used to make predictions using support vector machine models. The SVM

model also used 10 iterations to search for the best hyperparameter combi-

nations.

69

Vita

Candidate’s full name: Jacob Morehouse
University attended: Bachelor of Arts and Science, UNB, 2016
Publications: None
Conference Presentations: None

