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ABSTRACT

Forest Iomass is increasingly important for calibrating worldwide carbon changes and
ensuring sustainable forest management. Howeahereare no consistent standards for
aboveground biomass (AGB) estimation methddisect field estimation is costly and
destructive. We explored alternative methods for estimating AGB based on different
sources of grountiased remote sensingta We compared allometric equations derived
from metrics extracted from terrestrial laser scanning (TLS) to equations derived from
metrics extracted from spherical images. Spherical image metrics consistently performed
better than TLS metrics. Alternatively, wleveloped sector subsample selection methods
that utilized only measurements from spherical photos with a smaller subsample of angle
sample counts to correct for tree occlusion. The sector subsampling methods were
comparable to widely used big BAF subsaimgpland were much more efficient for
estimating AGB than the allometric equations. Sector subsampling has great potential to

reduce costs for AGB estimation and enabling access to monetized carbon markets.
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Chapter 1 General Introduction

1.1 Importance of Estimating Biomass

Biomass is important in understanding and traclahgngein the global carbon cycle
(Houghton 2005; Le Toan et al. 201Eprest biomass, which is related to global climate
change, carbon content and forest management, has been recognized as an important input
to Earth system mode(Blerold et al. 20193and is also an important component of a healthy
sustainable environmeiiBartuska 2006)Due to the increasing attention on mitigating
climate change and growing monetized carbon ma¢Betsvn 2002) quickly quantifying

forest biomass is extremely important for forest and business management eecision
making (Brown 1999; Peaon et al. 2007; Chen et al. 201Because estimating below
ground biomass is difficult, most reseatdsfocused on above ground biomass (AGB,

(Lu et al. 2016)And the aboveground biomass production validation should be consistent
across the worl@Duncanson et al. 2019)

Although field measurement of forest biomass provides the most accurate edqfimates

al. 2016) traditional biomass measurement in the field and post validation is costly,
destructive, labor intensive and timensuming. To estinta biomass, the destructive
harvest is required to dry and weight all parts of individual tree biomass, then sum up the
biomass for a single tree and expand the single tree biomass to plot, stand or strata level
estimates, which wastes lot of money andet(ershaw et al. 2016) New approaches

have been developed to estimate AGB more efficiently such as application of allometric
eguations, biomass expansion/conversion factors, models based on remote sensing data to

estimate aboveground bioma@&ang et al 2009; Lu et al. 2016; Yang et al. 2017)
1



Spherical images also showed potential to estimate forest attributes of i(t&ees
2019) Nowadays, variables based on forest inventory data such as DBH, height, LIDAR
point clouds or volume data can be apgplieto allometric equations to establish models
for biomass estimatioriSomogyi et al. 2007)which is much more efficient than

traditional biomass measurement.

1.2 Objectives of this Thesis

The overall objectives of this thesis were to develop new metfarcestimating per unit
area aboveground biomass using spherical photos and to compare these methods. Model
assisted estimation based of spherical photos and terrestrial LIDAR will be developed and
compared with samplassisted methods developed for ierpentation with spherical

photos.

1.3 Structure of Thesis

This thesis is composed of an introductory chapter, 3 paper chapters and a conclusions
chapter.

C h a p t Gompar2sonfof Biomass Estimation using Spherical Images versus Terrestrial
LIDAR Scanningin At | a nt i c¢mo@etbasaddbéooiingss estimation methods were
applied using twaources of grountiased remote sensirtgrrestrial LIDAR and spherical
images. The twaonethodswere compared to determiméhich approactperformed best.

This was the firsstudy to compare TLS and sphericamerabased metrics and their
ability to predict above ground biomass. The two sources of gibaseld remote sensing

were compared on the basis of how well different metrics extracted for the data sources



were able to gedict above ground biomass in western Newfoundland Iskamithorship

on this chapter was: Dai, Xiao; Yang, TiRy; and Kershaw, John A.

Chapter 3 developed the concept of sector subsampling as an alternative subsample
selection method to big BABubsampling. The subsampling methods selected measure
trees for biomass estimatiand the estimation of the biomass to basal area ratio (BBAR).
This chapter is the first study &pply sector sampling as a subsampling protocol similar

to big BAF samplingTwo different methods of sector tree selection are compared to big
BAF sampling. Both mean and standard errors of BBAR and biomass per ha are compared
This chapter has been submitted to the Canadian Journal of Forest Research and the authors
were: Dai, Xao; Ducey, Mark; Kershaw, John; and Wang, Haozhou.

In Chapter 4 we applied sector subsampling to spherical image analysis for biomass
estimation. We showed that sector sampling can be effectively applied using spherical
images even though only visible ions of the sectors were measurable. Errors were
comparable to those obtained in Chapter 2 with only a fraction of the measse
selectedA hierarchical sampling design was developed to correct for tree occlusion and
Bruce's formula was generalizémt more the two means and their associated errors. The
methods developed in this chapter do require any field measurements of trees, since all tree
measurements can be obtained directly from the spherical imEysschapter has been
submitted td~oresty: An International Journal of Forest Research, thiedaithorship of

this chapter was: Dai, Xiao; Ducey, Mark; Wang, Haozhou; Yang,-RungHsu, Yang

Han; and Kershaw, John A.



In Chapter 5, the methods presented in Chapters 2, 3, and 4 were comgaret inf
levels of effort required to implement and costs of equipment and processing time.

Suggestions for future developments and future research were made.
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Chapter 2 Comparison of Biomass Estimation using Spherical Images

versus Terrestrial LIDAR Scanning in Atlantic Canada

Abstract

Biomass is an important ecosystem measure. Measurement of biomass from destructive
samples is labor intensive and difficult to update quickly. The use of allometric equations
requires extensive field data, whics also expensive to acquire and equally difficult to
update. Remote sensing is a means of estimating biomass quickly througrassisteld
techniques. In this study, two terrestrial remote sensmgces a terrestrial LIDAR
scanner (TLS) and a 360pleerical camera, were evaluated based on resssted
approachesSeveral TLS metrics based on height quantiles and density measure were
extracted from TLS scans. Photo basal area (PBA) was extracted from spherical photos at
different heights above grodnNonlinear regression models were developed using the
different metrics from each remote sensing technique. Models based on TLS metrics
explained between 3% and 23% of the variation in stewel biomass, while models based

on PBA explained 19% to 74% the variation. In this study, 360° spherical camera
consistently provided model estimates that had lower rMSE than the models developed
from TLS. Averages of estimates of PBA from multiple sample locations within a sample
plot or averages across mulgpheights produced better models than PBA estimates from
single sample locations within a plot. Stand structural diversity and species composition
negatively impacted model prediction ability for both TLS and spherical im@gesn the

cost differences,id¢ld acquisitions times, and pgstocessing times, the estimates from a



360° spherical camera provide an accurate and affordable alternative method for rapidly

estimating biomass in Atlantic Canada.

Introduction

Bi omass at global, regional or | ocal scal es
carbon cycleglLe Toan et al. 2011)Forest biomass, which is closely related to carbon
content within the forest, is also an important component of a healthyinsixta
environmen{Bartuska 2006)Due to the increasing attention on mitigating climate change
and growing monetized carbon markgsown 2002) quickly quantifying forest biomass

is extremely important for forest and business management degisiking(Brown 1999;
Pearson et al. 2007; Chen et al. 20I®)llecting inventory parameters (e.g., diameter at
breast height, DBH; and height) and sufficient destructive samples across a range of tree
sizes to develop allometric equations for biomass estimgtiome-consuming, subject to
measurement error, and difficult to implement across large fre@006) Development

of such allometric equations are usually limited to research projects rather than
implemented in operational inventori@sershaw et al. @16). Even collecting the data
necessary to use allometric equations is costly and requires careful planning to produce
cost efficient, low error estimat@édusch 1980; Lynch 2017; Yang et al. 2010¢veloping
efficient approaches to estimate biomass gisidvancednethodsis required to reduce

field inventory costs.

Light Detection and Ranging (LIiDAR), which can provide hrglolution three
dimensional (3D) point clouds, has emerged as one of the promsisimgesof remote

sensinglatato estimate arehased forest attributes (Naesset 2002; Bouvier et al. 2015), or
8



individual tree analyseg@elton et al. 2013; Greaves et al. 201Ggnerally, there are two
broad types of LIDAR: airborne LIiDAR scanning (ALS); and terrestrial LIDAR scanning
(TLS). ALS hasbeen widely used to characterize forest structural attributes (e.g., canopy
height profiles and some individual tree attributes); however, because of tree occlusion,
difficulties in characterizing structural diversity and vertical distribution by vegatatio
component (e.g., foliage distributions, branch identification, crown transparency and size
distribution) still exist(Hilker et al. 2012; White et al. 2016n comparison, TLS has
shown promise to enhance airborne LIDAR by providing frggolution scas of forest

structure from the ground {Ppucey and Astrup 2013; Astrup et al. 2014)

Various approaches of biomass estimation using LIiDAR data have been proposed. One
common approach is model generation by combining field measurements and LiDAR
attributes to build predictive models for arbased biomass estimatigdankare et al.

2013) A variety of LIDAR attributes are extracted from point clouds. These attributes
generally fall into one of four categories: 1) heigittcanopybased; 2) horizontal deihs

based; 3) horizontal and vertical variability; and 4) individual tree segmen(Aijogy et

al. 2019) Although various estimation approaches are advocated, which approach is the
most efficient for biomass estimation has not been systematically eapMfith high
equipment expense, long field scanning times, extensive point cloud processing. and
problems associated with detecting canopy surfaces and occluded trees, the efficiency of
areabased biomass estimation via TLS remains an unkr{bimnet al.2018) especially

in terms of operational inventory.



Using highresolution panoramic photography is an alternate,-effsttive way to
improve forest inventory efficiendick et al. 2010; Lu et al. 2019nd perhaps biomass
estimation. Hemispherical paramas are obtained by taking a series of photographs with

a normal camera and a specialized device to precisely move the camera through the
360°/180° space, then stitching the multiple photographs together. The resulting
hemispherical panoramas have a“3b60rizontal and 180° vertical field of view and can

be used to estimate tree attributPsck et al. 2010; Fastie 2010; Perng et al. 2018; Lu et

al. 2019) Several closeange terrestrial photogrammetric approaches are used to obtain
forest inventory attributes from hemispherical panoramic photographs. For example, Lu et
al. (2019)recently applied a pinhole camera model and showed the potential for egfimatin
volume of individual trees. However, one disadvantage of their approach was that a target
of known size and the horizontal distance between the camera and sample tree were
required to scale DBH. In another approaéterng et al. (2018lused stereoscopic
techniques to triangulate trees, obtain photo scale, and subsequent tree measurements.
These approaches are tho@nsuming and labor intensive to implement on each tree in the

field.

An alternative approach is to use the hemispherical panoramas aspbetbbasal area

plots and apply horizontal point sampling (HPS) principles as originally proposed by
DeCourt (1956)and later revived b$tewart (2004)Dick (2012) andFastie (201Q)For
photobased HPS, an angle gauge, defined in terms of photo pseksed to select tally

trees. Basal area per unit area is then calculated from the number of tally trees without any

tree measurements required in the fi@dterlich 1984; lles 2003; Kershaw et al. 2016)

10



Compared with traditional field work, usingghiresolution panoramic photography saves

time and cost@Fastie 2010; Perng et al. 201®Jhile there are several advantages to using
hemispherical panoramas, they have limitations similar to TLS. For example, the
specialized devices to precisely move tlenera through the 360°/180° space are costly
and bulky to carry through the woods; acquisition times in the field can be lengthy; the
multiple images require special software to stitch the images together; stitching potentially
leads to errors; the stited photographs then have to be processed to obtain the required
measurements; and the issue of occluded trees is still problematic. In many respects, both
hemispherical panoramas and TLS are exchanging high field labor costs for high

equipment costs andfiwe labor costs associated with pdisid processing.

Recently, introduced consumgrade 360° spherical cameras have the potential to address
several of the current shortcomings of both TLS and hemispherical panoramas. These new
cameras use two fixedhemispherical lenses to obtain a full 360°/360° spherical
photograph. The two hemispherical photos are stitched together using the onboard camera
software and the camera is controlled by a smartphone. Image acquisitions takes seconds
and multiple images psample location are obtained very rapidly. W&@19)andWang

et al. (2020emonstrated how these images are used as-phaetal HPS plots and applied
spherical stereography to obtain estimates of tree DBH and total Hdigkerhill et al.
(2019)used spherical images and structure from motion to develop 3D point clouds from
which tree measurements were then extracted. The low cost, quick acquisition time, and
small, compact size make these spherical cameras a more attractive alternative to both TLS

and hemispherical panoramas.
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Building upon the work of Wang et §2019)and Wang2020) we propose to compare
areabased estimates of biomass based on TLS attributes to estimates based on attributes
extracted from spherical photos. To evaluate theopmdnce of the two tools under
different degrees of forest structural complexity, data collected from western
Newfoundland (lower forest structural complexity) and Noonan Research Forest (higher
forest structural complexity) in central New Brunswick areduis this study. Advantages

and disadvantages of the tapproacheare discussed.

Materials and Methods

Study sites

Data from two different research projects were used in this study. The first set of data
came from three early spacing trials in westéenwfoundland, Canada (Figure 2. 1). The
second data set came from the Noonan Research Forest located in central New

Brunswick, Canada (Figure 2. 1).

Early Spacing Trials in western Newfoundland

In the early 1980s, the governmentMéwfoundland, in cooperation with the Canadian
Forest Service, established a series of early spacing trials in balsAbids balsameh.)

and black sprucePfcea mariana (Mill.) Britton, Sterns & Poggenb.) dominated stands
across Newfoundland islaiBonnelly et al. 1986)in this study, 3 balsam fir trials located

in western Newfoundland (NL) were used: Pasadena, Cormack, and Roddickton (south to
north inFigure 2. ). The spacing trial plots were arranged using a randomized complete
block design with3 replicates per site. There were 5 spacing treatments: Control or no

12



spacing (S00), 1.2m spacing (S12), 1.8m spacing (S18), 2.4m spacing (S24) and 3.0m
spacing (S30). Each treatment was applied to a 0.25 ha block (50m x 50m), and a circular
permanent sapie plot (PSP) was established near the center of each block. There was a

total of 45 PSPs from the NL spacing trials used in this study.
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Figure 2.1 Study site locations in Newfoundland and New Brunswick.

Because of the large differences in densities among the 5 treatments, the PSP radii varied
by spacing treatment such that approximately 100 trees were measured on each PSP. The
PSP radii by spacing treatment were: S00 = 5.2m; S12 =7.2m; S18 = 10.4m} S0+

and S30 = 18.0m.
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Trees taller than breast height (1.3m) were tagged with a unique tree number, identified by
species, and diameter at breast height (Did#rest 0.1cm) and total height (HT; nearest
0.1m) were measured using a diameter tape and a telescoping height pole, respectively.
Measurements were made immediately following spacing treatment and at intervals of 3
to 5 years with the last measuremergmb 2017 for Roddickton, 2013 for Pasadena, and

2013 for Cormack. A summary of field measurements is shown in Table 2. 1.

Noonan Research Forest (NRF)

The Permanent Sample Plots (PSPs) located on the Femelschlag Research Area within the
Noonan ResearchoFest (NRF,Figure 2. } comprised the second data set used in this
study. The Noonan Research Forest 1 s manacg
Faculty of Forestry and Environmental Management and is located approximately 30 km
northeast of Frederioh, NB, Canada. The NRF is 1532 ha and the Femelschlag Research

Area is approximately 80 ha.
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Table 2.1 Mean, standard deviation (in parentheses) and range (in bracket) for diameter
at breast height (DBH, cm), total height (HT m) , st em dens-l)tbgasal( Den s
area (BA, mz2hd ) , and b i o All bys spacirtg oreatneerstsA forathe 45

Newfoundland (NL) spacing trials and overall for the 83 Noonan Research Forest (NRF)

plots.
Study Spacing Parameter
Site  Treatmen DBH HT Density BA Biomass

(cm) (m) (st eths (m?had) (t onnmes
NL  Control  8.5(1.51) 8.4(1.34) 11000(3400) 69(7.8) 200(19)

{6.9,11.1} {6.2,10.3} {4800,16000} {55,83} {170,230}

1.2m 11.9(2.97) 9.4(1.90) 5100(1400) 58(10.6)  180(42)
{8.5,16.8} {7.3,12.4} {3000,6800} {44,75} {130,250}

1.8m 13.3(2.09) 9.1(1.54) 2900(350) 43(11.0)  130(39)
{9.9,16.0} {7.3,11.3} {2400,3300} {28,63} {80,200}

2.4m 16.2(1.33) 10.1(1.18) 1800(450) 40(9.6) 130(32)
{14.2,18.7} {8.1,11.4} {1300,2500} {29,59} {90,190}

3.0m 17.7(1.87) 10.0(1.15) 1100(150) 30(7.0) 100(25)

{15.2,20.3} {8.7,11.8} {900,1300} {21,40} {70, 140}

NRF 15.5(3.10) 12.4 (1.76) 1900 (800) 41 (6.7) 180 (41)

{9.7,24.5) {8.7,17.4} {600, 4450} {21,55} {80, 310}
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Species composition was typical of the Acadian Forest region (Loo and Ives, 2003; Rowe,
1972) with stand composition ranging from relatively pure conifer species to mixed
intolerant hardwoodtands and mixed hardwdambnifer stands. Balsam fir was abundant

and found in almost every PSP. The NR&s predominantly composed of mature stands
(>70 years old)Compared to the NL spacing trials, the PSPs from the NRF provided a
dataset with more contlgx stand structures. Eightiiree 0.04 ha fixed area PSPs were
established on a 100 m by 100 m sample grid for monitoring-tlemmyg response to
silvicultural treatments. The PSPs were circular plots and all trees within 11.28m of plot
centerweretaggedwt h uni que tree numbers within eac
were identified by species, and both DBH (nearest 0.1cm) and HT (nearest 0.1m) were
measured in 2014. DBH was measured with a diameter tape and HT using a TruPulse laser

hypsometer. A smmary of observed field data for NRF is shown in Table 2. 1.

Biomass Estimation

The speciespecific Canadian National Biomass equations developed by Lambert et al.
(2005) were used to estimate individual tree biomass. The equations containing both DBH
and HT(Eqg. 3, Table 2. 4 in Lambert et al. 200&kre used in this study. The initlual

biomass components (wood, bark, branches, and foliage) were separately estimated, and
total tree biomass was obtained by summing these components for each tree. Biomass per
ha was obtained by multiplying ioatactoh(ER)r ee o s

and summing across all trees on each ({etshaw et al. 2016)

10,000

) plot size(ni ) @
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With the NL data, EF varied by spacing treatments, while it was fixed (i.e., EF = 25) for

the NRF data. Field biomass estimates for lolaifa sources are shown in Table 2. 1.

Terrestrial LIDAR Scanning and Processing

TLS scans were obtained usindg-aro X330 phasshift scanner (horizontal from 0° to

360° and vertical from 90° t&0°) with a shortwave infrared wavelength of 1550 nm. To
balance the needs of scan quality and scan duration, 3 scans at 1/4 resolution (point spacing
of 6.14 mm at a 10 m range) and 4X quality with thbuilt GPS were completed for each

scan (FARO Technologies Ltd, 2016). It required around 12 minutes perNcHiple

scans on each plot were used to minimize tree occlusion. Scans were made at half the plot
radius along azimuths of 120°, 240°, and 360°. TLS scans were obtained in August of 2017

in NL and in July of 2018 in the NRF.

The 3 scan®btained at each PSP were ppsicessed and stitched together using the
FARO® SCENE software (FARO Technologies Ltd, 2016). The automatic matching
algorithms often failed to produce an acceptable coregistered point cloud, so manual
registration of scanssing spherical reference targets placed within the PSPs was required.
The filtering of individual point clouds to remove points outside the plot area was carried

out after registration.

LiDAR Metrics

Areabased estimates built from LIDAR metrics usingistecal techniques is a common
method used for LIDAR analysis and was used in this study. Many studies show strong

relationships between biomass and LIDAR metf(ittitker et al. 2010; Greaves et al. 2015;
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Palace et al. 20167 here are four major types biDAR metrics, including heighbased
metrics, densitypased metrics, structure variability and individual tree segmentation. In
this study, we focused on heigitised metrics and point cloud densities at 4 different
heights above ground (1.6m, 2.6m, 3,8htm). These heights were chosen to correspond

to the heights at which spherical image were obtained (Section 2.3). There were 12 metrics

extracted from the LIDAR point clouds (Table 2. 2).

Spherical Image Acquisition and Processing

Spherical images werebtained using a Ricoh Theta S 360° cam@&®eoh Imaging
Company, LTD 2016)For the PSPs in NL, spherical images were obtained at the same 3
locations used for TLS. However, in the NRF, spherical images were only obtained at the
plot center (these imageavere originally obtained for a different analysis, thus the different
protocols). At each spherical image acquisition location, spherical images were obtained

at heights of 1.6m, 2.6m, 3.6m, and 4.6m using a trgiadilized height pole.
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Table 2.2 LIDAR metrics and associated descriptive statistics (mean + stand deviation)

for Newfoundland (NL) and the Noonan Research Forest (NRF).

Metric Definition Study Site
NL NRF

MaxHT Maximum height (m) 13.31 +2.98 23.25+3.10

MeanHT Mean height (m) 241+£052 2.82+0.66

HTmaxDens Height of the maximum density of 528+101 1.894+097
LiDAR returns (m)

DensA16 Density of LIDAR returns (number 035+0.15 0.37+0.07
per m3) above 1.6m height

DensA26 Density ofLIiDAR returns (number 033+0.15 0354+0.07
per m3) above 2.6m height

DensA36 Density of LIDAR returns (number 029+015 0324+0.08
per m3) above 3.6m height

DensA4G Density of LIDAR returns (number 023+015 029+ 0.08
per m3) above 4.6m height

DensH16 Density of LIDAR returns (number 035+015 037+0.07
per m3) at 1.6m £ 0.05m

DensH26 Density of LIDAR returns (number 033+0.15 0354007
per m3) at 2.6m £ 0.05m

DensH36 Density of LIDAR returns (number 029+015 0324+0.08
per m3) at 3.6m % 0.05m

DensH46 Density of LIDAR returns (number 023+0.15 0.29 +0.08
per m3) at 4.6m + 0.05m

Kurtosis Kurtosis of return heights 3.21+0.83 6.04 +3.16
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The primary variable extracted from the spherical images was photo basal area per unit
area (PBA) at image height. For each spherical image, the PBA at the camera center was
extracted using a custom software package (Pano2BA) developed by (¥¢4:8)and

Wang et al.(2020) The Pano2BA software implements a phb&sed HPS protocol
(DeCourt 1956; Stewart 2004; Fastie 2010; Wang 2(8herical images were read into

the software and displayed on the screen. With the use of the target marking option, a
horizontal line was superimposed on the image at the vertical center. The target was scaled
to represent a specified basal area factor (BAF). Then, the target was moved along the
image center line and trees appearing larger than the target were marked usimgea m

click. PBA was then the number of marked trees multiplied by the BAF.

As mentioned above, a common issue for any fixed grinaseéd remote sensing device

is occluded trees. Occluded trees result in PBA underestimating field BA because trees that
shoud be counted are missed because they are hidden by clos€Dioke®012; Wang et

al. 2020) To minimize tree occlusion with the TLS scanner, we used multiple TLS scans
and coregistration. Similarly, multiple PBA estimates and averaging was useduoered

the impact of occluded trees on the spherical im@gmg et al. 2020)Thus, there were

3 potential PBA variable combinations: 1) single PBA estimates at a single location and
image height (PBA(S)); 2) averages of multiple PBA from different imagatilans, but

single image heights (PBA(A)); and 3) averages of PBA across different image heights at

either a single image sample point or multiple sample points (PBA(*)).
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Table 2.3 Photo metrics (photo basal area, PBAY associated statistics (mean +

standard deviation) in Newfoundland (NL) and the Noonan Research Forest (NRF).

Metric Definition* Study Site
NL NRF
PBA(S)1.6 PBA extracted from a single
_ 35+14.1 29+7.8
location (S) atl.6m above grounc
PBA(S)2.6 PBA extracted from a single
_ 31+134 27 +£8.0
location (S) at 2.6m above groun
PBA(S)3.6 PBA extracted from a single
_ 27 +12.8 26+7.4
location (S) at 3.6m above groun
PBA(S)4.6 PBA extracted from a single
_ 22+11.4 24+7.6
location (S) at 4.6m above groun
PBA(A)1.6 Average PBA extracted from 3
_ 34+12.3 -
locations at 1.6m abowgound
PBA(A)2.6 Average PBA extracted from 3
. 31+11.9 -
locations at 2.6m above ground
PBA(A)3.6 Average PBA extracted from 3
_ 26+11.4 -
locations at 3.6m above ground
PBA(A)4.6 Average PBA extracted from 3
_ 21+10.6 -
locations at 4.6m abowgound
PBA(*)1.6,2.6 Average of PBA extracted from
32+12.0 28+7.6
1.6m and 2.6m above ground
PBA(*)1.6,3.6 Average of PBA extracted from
30+11.7 28+ 7.3
1.6m and 3.6m above ground
PBA(*)1.6,4.6 Average of PBA extracted from

28+ 11.1 27+7.3
1.6m and 4.6m above ground

PBA(*)1.6,2.6,3.6,4./ Average of PBA extracted froall
heights

28+11.3 27+7.2

13 locations for NL center location for NRF
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Biomass Estimation using TLS and PB#etrics

After exploring a number of linear and nonlinear functions, the power function proved to
provide the best estimates of biomass for a majority of the TLS and PBA metrics. The

single variable form of the power function was:
"o 1 38y (2)

where" - | 3i8the model estimated biomass initheSP X; = a LIDAR (Table 2. 2) or
photo (Table 2. 3) metric for th& PSP, andjtare nonlinear regression parameters. Models

were evaluated based on root mean square error (rMSE) and the nonlineasRfseudo

O- 3% > : 3)

where BMASS$ = the field measured estimate of biomass in tHegp," - | 3iSthe

model estimated biomass in tH&PSP, and n is the number of PSPs. To tatdi
comparisons across spacing treatments and study locations, rMSEs were expressed as
percentages of mean of field biomass (BMASS). The Kolmorg8rairnov twesample
distribution testK-S test; Zar 2009)as used to assess statistical differences between field
and predicted biomass distributions. In addition, the twoesised ttest for equivalence

(TOST testRobinson and Froese 2004as used to compare predictions to field measures

and predictions aoss models based on different LIDAR and photo metrics. FBddsts

were conducted using the ks.test() function in the base contribomsld et al. 2013;

R Development Core Team 20X8)d the TOSTs were conducted using the tost() function
from the guivalence packaggakens 2017 R.
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Finally, we explore the impacts of stand structure on the resulting model errors. For the NL
data, the best fitting TLS model and the best fitting PBA model (based on the
lowest %rMSE) by spacing treatment were coragafFor the NRF data, we calculated a
basal area weighted Sh gStaudhaminser ardd heMay 20G1; di v e
McElhinny 2005)and St audhammer and theight yivarate ( 2 00 1
structural diversity index for each plot and then exammseuals from the best fitting

TLS and PBA models graphicalhAll analyses were conducted in the R statistical

languagdR Development Core Team 2019)

Results

Models derived from TLS Metrics

Table 2. 4 shows %rMSEs and psetRfsfor singlevariable power functions by LiDAR
metrics and study sites. The ranges in %rMSE and psetidalues for NL were larger

than what were obtained for NRF across the different LIDAR metrics (Table 2. 4).
The %rMSE of 12 TLS models ranged from 19.22 to 330tHL, and 19.82 to 22.42 for
NRF. While %rMSEs were generally smaller for NRF (less error) compared to NL, the
pseudeR?s were also smaller (indicating less variation explainéol).NL, densitybased
metrics generally performed better than heigh$ed retrics (Table 2. 4). Metrics
representing densities above specified heights (DensA##) performed better than density
based metrics at given height slices (DensH##; Table Zhig was similar for the NRF;
however, the differences were smaller. DensA46 tvasest performing LIDAR metric

for the NL data (best model was TLS07), while MeanHT was the best for the NRF data

(best model was TLS02) with DensA46 just slightly larger (Table 2. 4). In no case did any
23



combination of multiple TLS metrics result in nedsl with significant improvements in fit
(results not shown). The estimated coefficients and their associated standard errors for all

models on both study sites are shown in supplemental table S1.

Models derived from Spherical Images

For the NL data, %rMS&were substantially smaller for biomass estimates derived from
PBA (Table 2. 5) compared to those derived from LIDAR metrics (Table 2. 4). Likewise,
the associategseudeR? values were much larger (Table 2. 5). For the NRF data, both
the %rMSEs angsewlo-R? for the PBA models (Table 2. 5) were comparable to those
obtained for the TLS models (Table 2. 4). As with the TLS models, all the pSfwedues

for the PBA models in NRF were smaller than the ones in NL. The %rMSE of 12 PBA
models ranged from 17.17 to 22.95 for NL, and 19.83 to 20.38 for NIR#estimated
coefficients and their associated standard errors for all PBA models for botlsistisdyre

shown in supplemental table S1.
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Table 2.4 Percentroot mean square error (%rMSE) and nonlinear ps&fdor biomass
estimation models built using individual LIDAR metrics for the Newfoundland (NL) and
the Noonan Re=arch Forest (NRF). Bold italic represents models that had no significant

(p > .05) relationships.

Model LiDAR Metrict NL NRF
Number %rMSE  PseudeR? %rMSE  PseudeR?
TLS01 MaxHT 30.50 0.18 21.28 0.11
TLS02 MeanHT 33.15 0.03 19.82 0.23
TLSO03 HTmaxDens 28.07 0.30 22.20 0.03
TLS04 DensAl6 25.59 0.42 20.81 0.15
TLSO05 DensA26 24.38 0.47 20.41 0.18
TLS06 DensA36 22.03 0.57 20.11 0.21
TLSO7 DensA46 19.22 0.67 19.92 0.22
TLSO8 DensH16 32.95 0.04 21.87 0.06
TLS09 DensH26 32.78 0.05 21.92 0.06
TLS10 DensH36 32.81 0.05 22.33 0.02
TLS11 DensH46 30.85 0.16 22.42 0.01
TLS12 Kaurtosis 32.83 0.05 21.85 0.06

lsee Table 2. 2 for definitions of each LIDAR metric

For the NL data, models derived from the averages of PBA from 3 photo sample locations
performed better than models derived from PBA based on a single photo sample location

(compare PBA(S)## to PBA(A)## in Table 2. 5). Averaging across multiple photasieigh
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was better than using a PBA estimate from a single height (compare PBA(*)## to
PBA(S)## in Table 2. 5). For the NRF data, using a single average across different photo
heights was statistically more significant than using each height as an inde pemicdxhé v
though the model improvements were small (compare PBA(*)## to PBA(S)## in Table 2.
5). However, it should be noted that for the NL data, PBA(*)## represents averages that
are based on averages of three photo samples taken at each height, tgedaaeoss
different heights (i.e., averages of 6 or 12 PBASs), while for the NRF there was only 1 photo
sample location with 4 different sample heights (i.e., averages of 2 or 4 PBAS). In no case
did we find a model with multiple independent PBAs thatiltes in significant (p > .05)
improvements in fits (results not shown). For both NL and NRF data, the averages of PBAs

at 1.6m and 4.6m produced the best fits to the biomass data (best model was PBA11).
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Table 2.5 Percentoot mean square error (%rMSE) and nonlinear psé&fdor biomass

estimation models built using various PBAs for Newfoundland spacing trials (NL) and

Noonan Research Forest (NRF). (all equatio
Model Photo Metrié NL NRF
Numbers %rMSE  PseudeR? %rMSE  PseudeR?®
PBAO1 PBA(S)1.6 20.27 0.64 20.24 0.20
PBAO2 PBA(S)2.6 20.96 0.61 20.11 0.21
PBAO3 PBA(S)3.6 22.95 0.53 20.38 0.19
PBAO4 PBA(S)4.6 21.69 0.58 20.01 0.21
PBAO5 PBA(A)1.6 17.36 0.73 - -
PBAO6 PBA(A)2.6 18.34 0.70 - -
PBAO7 PBA(A)3.6 19.75 0.66 - -
PBAO8 PBA(A)4.6 19.62 0.66 - -
PBAO9 PBA(*)1.6,2.6 17.59 0.73 19.95 0.22
PBA10 PBA(*)1.6,3.6 17.88 0.72 20.07 0.21
PBAl1l1 PBA(*)1.6,4.6 17.17 0.74 19.83 0.23
PBAl12 PBA(*)1.6,2.6,3.6,4.6 17.83 0.72 19.84 0.23

! see Table 2. 3 for definitions of each photo metric

Model Comparisons

Figure 2. 2 shows the relationship between field biomass and the predicted biomasses from
the best fitting TLS and PBA models for NL (TLS07 and PBA11) and NRF (TLS02 and

PBA11). For both TLS and PBA models, NL predictions had a broader range and were
27



moreclosely related to field biomass than what was obtained for the NRF (Compare Figure
2. 2A, C to Figure 2. B, D). Across the range of field biomass, NL predictions had lower
bias and less scatter about the 1:1 line (Figure&. @), while for the NRFtiere was
substantial overprediction in the lower range of field biomass and substantial
underprediction in the upper range (Figure 2B,2D). Comparing the two sets of
predictions (Figure 2.-E, F), again, the NL predictions appeared to be more sirhgar t

the NRF predictions; however, this was more a function of the range of predictions rather
than actual differences (Figure 2E2F). In terms of statistical differences-8test) and
statistical equivalences (TOST test), compared to the field bgestgnates, biomass
predictions from the best models of TLS and PBA for both NL and NRF data were not
significantly different and were statistically equivalent (based on a minimum detectable
nortnegligible difference of 10%) to the field measurementsufiei@. 3). Similarly, the
comparisons between the two predictions from the best models of TLS or PBA were not
significantly different and were statistically equivalent for both NL and the NRF (Figure

2. 3).
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Figure 2.2 Comparisons of best model predictianigh field biomass and comparisons of
best model predictions (PBA versus TLS metrits) Newfoundland (NL) and Noonan
Research Forest (NRF): A) Predictions from model TLSO07 versus fi@hdass for NL;

B) Predictions from model TLS02 versus field biomass for NRF; C) Predictions from
model PBA11 versus field biomass for NL; D) Predictions from model PBA11 versus field
biomass for NL; E) Predictions from model PBA11l versus TLSO1 for NL; End

Predictions from model PBA11 versus TLS02 for NRF.
29



TLS_Metrics vs Field -- ':‘ ————- -E‘ E -- -:u - -
PBAvs Field sm==p==-c=o N
s ] : —— :
PBA vs TLS_Metrics —mim = =|-= =0 ;______.Q
I T T T 1 I T T T 1
-0.2 -01 00 0.1 0.2 -0.2 -01 00 01 0.2

Max(D) for K-S test

Relative minimum detectable non-negligible difference for TOST
Figure 2.3 Kolmogorov+Smirnov test (KS test, dashed lines) and Equivalence test
(TOST test, solid lines) between best model predictions (models TLS02, TLS 07 and
PBAL11) and field biomass and betwegerdictionsfor A) Newfoundland (NL) and B)
Noonan Research ForestRF). (The horizontal bars for the KS test represent the critical
(U = .05) maximum di fference and the horiz
bounds of the zone of minimum detectable negligible differences of 10% of the mean

value.)

Influence of Structural Diversity on Model Performance

Based on both the best TLS model and the best PBA model for the NL data, as management
intensity increased (increasing spacing treatment), the %rMSE associated with each

treatment (spacing) decreased (less erraljd 2. 6). Except for SO0, %rMSEs for the best
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PBA model were smaller than those for best TLS model across all spacing treatments
(Table 2. 6). For both TLS and PBA models, biomass estimates for SO0 were very poorly
predicted and prediction error exceedbderved variation (Table 2. 6). For the NRF data,
increasing species diversity did not result in any noticeable increase in bias for both the
best TLS model and the best PBA model (FigureR, B) based on the lowess trend lines;
however, both modelshewed a trend of increasing variability in residuals as species
diversity increased. For the bivariate structural variance index (STVIdh) there was a slight
trend of increasing negative bias with increasing structural diversity as well as increasing

residwal variation (Figure 2.-C, D).

Table 2. 6 PartialMSEs (%) and nonlinear pseu@ under two biomass estimation

models across five spacing treatments for Newfoundland (NL).

Spacing/m TLS PBA
%rMSE  PseudeR? %rMSE  PseudeR?
0.0 15.46 -1 21.38 ---1
1.2 23.02 0.32 19.67 0.51
1.8 20.92 0.37 16.88 0.59
2.4 18.83 0.24 11.22 0.73
3.0 14.25 0.29 12.38 0.46
Overall 19.82 0.67 17.17 0.74

1 Model error exceeds variation
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Figure 2.4 Comparisons of residuals derived from TLS and PBA metrics with the

bivariate structural variance index fdoonan Research Forest (NRR) Residuals from
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of structural diversity; and D) Residuals from PBA11 model for NRF versus the index of

structural diversity.
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Discussion

Forests represent a key component in the terrestrial carbon(lcgcl®an et al. 2011; Pan

et al. 2011; Jucker et al. 20180d, as such, accurate inventory estimates are required to
monitor and manage forest carbon sto@own 1999, 2002)Biomass isan important
precursor to the estimation of carbon sto@Bsown 1999, 2002; Chen et al. 2019)
Therefore, efficient methods to estimate biomass are reqiiBeetuska 2006; Chen et al.
2019) One solution to this need is the development of biomass éstmmaodels such as

the ones developed in this project based on remote sensing.

In this study we compared biomass models derived from terrestrial LIDAR scans and
spherical images obtained with a conswgede 360° spherical camera. Our errors
associatedvith models derived from LIDAR metrics were generally larger than errors
associated with models derived from sphericedgederived PBA (Tables 2. 4 and 2. 5).
The differences were greater for the NL data than for the NRF data. Percent rMSE
(%rMSE) rangedrom about 20% 33% for the NL data and from 20923% for NRF
(Table 2. 4). Our errors were comparable to what others have found using TLS. For
exampleClark et al.(2011presented biomass models derived from heligised metrics

in complex tropical feests with rMSEs of 38.3 Mg/h#oskal and Zheng (2011) found

that single location TLS scans only explained about 18% of the variation in total sample
tree volume. Astrup et al2014)reported errors of approximately 10% , Vaglio Laurin et

al. (2014)reported errors of 39% with LIDAR height metrics, while Li et €2015)
reported errors of 35% when estimating sagebrush biomass. Our best models developed

from photo metrics explained over 50% of the variation in aboveground biomass in NL,

33



but only a littleover 20% for the NRF (Table 2. 4). The use of a single pbased sample
location on the NRF may partially explain the lack of differences between TLS and PBA

models as observed in the NL data with three photo sample locations.

Several studies have recently examined the use of hemispherical panoramas and spherical
photography to extract stand and individual tree attrib(@t=vart 2004; Dick et al. 2010;
Berveglieri et al. 2017; Mulverhill et al. 2019; Wang et al. 203®waret al(2004) Dick

et al. (2010), and Fasti@010) all attempted to estimate basal area from single photos
and/or panoramas stitched from multiple photographs based on the photo angle count
concept originally proposed by DeCouyt956). All of these studs identified tree
occlusion as a major problem associated with pbaked angle count sampling. Wang et

al. (2020) demonstrated that the photo angle count concept could be extended to spherical
images and demonstrated that multiple photo sample poimsnized the issue of
occluded trees. Our results for estimating biomass support this conclusion as well. Using
three sample points per plot reduced the %rMSE from about 20% to 17% for the NL
spacing trail data (Table 2. 5). Using averages across msiépiple heights from multiple
sample locations provided the best estimates but only marginally improved model

performance (%rMSE was reduced from 17.36 to 17.17; Table 2. 5).

Stand structure significantly influenced model performance (Table 6, Figure 2. 4) and
complex stand structure increased the difficulty in estimation of forest biomass (Table 6,
Figure 2. 4). While increased species diversity did impact prediction bdid, riésult in
increasing variation in predictions errors (Figure 2. 4). Li et al. (2015) found that study

area size and point cloud density impacted model performance because differences in
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sample sizes and spatial distributions can augment errors frameaficequationgLevia

2008) Zhao et al(2012)also found that selection of allometric equations impacted the
resulting LIDARbased forest biomass estimates, especially in plots with high biomass.
Substantial biases, in the form of underpredictiorespften present in the predictions for
higherdensity, highebiomass standd.i et al. 2019; Chen et al. 2020hcreasing stand

complexity resulted in increased variance in residuals in this study (Figure 2. 4).

It is interesting to note that the bestABiodels were the averages of PBA estimates at

two different heights (Table 2. 4). Like biomass estimation is a precursor to carbon
estimation(Brown 1999, 2002; Chen et al. 2019dlume can be considered a precursor

to biomass estimatio(Kershaw et al2016; Chen et al. 2019Biomass = (Specific
Gravity)(Volume). At the sterdevel, volume of a stem section can be estimated using
Smal i an 6 &ershawretmall 2046 p. 141Yolume = 0.5(Area of Base + Area of
Top)(Length). The areas are the cresgional areas estimated from the diameters at each

end point. Cross ect i onal area is a stembs equival e
PBA estimates at two different heights is really a starelv e | expression o
formula. Coupling this estiate with some measure of stand height would most likely
improve the models developed here. This is likely another contributing factor to the lack

of improved model performance with the NRF versus NL data. The 4.6m sampling height

is about 1/% the averag plot height in NL, but only about 17%he average plot height on

the NRF. The average PBA between 1.6m and 4.6m possibly better captures the basal area
Atapero for the NL sites than it does for

substantially iproved %rMSEs and pseud®ss. The limits of our field equipment made
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it impossible to obtain photos from higher points. A height pole with greater extension or

mounting the spherical camera on a drone could easily solve this problem.

LiDAR scanning has gaed recognitionWhite et al. 2013pas a standard tool in forest
resource inventorieReutebuch et al. 2005; Dassot et al. 20¥all-to-wall estimation

of biomass is a common product from many airborne LiE#sRisted forest inventory
studies(Lefsky etal. 2002; Pflugmacher et al. 2008; Hawbaker et al. 2009; Meyer et al.
2013; Hayashi et al. 2015)he high spatial resolution of walb-wall LIiDAR -assisted
inventory maps makes LIDAR a seductive tool conveying a sense of accuracy that is not
supported byhe underlying models or field calibration dé¥ang et al. 2019; Chen et al.
2020) Local calibration of LIDAR predictions may be required to make LiBPasRisted
predictions useful for local management decisibisi 2019) The models developed here
coud be a useful approach to extend these-lgho¢l estimates to watb-wall estimates

using a hierarchical variable probability sampling degidgsu 2019; Chen et al. 2020)

Conclusions

When we compare our TLS results to our PBA results, we find very little differences in
model predictions (Figs. 2 and 3). PBA models generally account for a higher percentage
of variation and produce lower %rMSEs than the TLS models. Given the field time
differences and the cost differences, the spherical photos seem to be an effective way to
estimate arebdased above ground biomass relative to TLS. The Ricoh Th@Rac&h
Imaging Company, LTD 2016)sed in this study costs around $400 Canadian while the
FARO Scanner costs over $100,000 Canadian. To obtain threeesalilition scans per

plot took upwards of one hour, while the 12 spherical photographs can be obtained in under
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10 minutes. Multiple TLS scans must be postprocessed, including coregisterigemult
scans, determining ground layers, and extraction of TLS metrics. This process can require
up to 30 minutes of office processing time. The spherical photos also require post
processing of images to obtain PBA estimates. Using the Pano2BA software €¥\édng
(2020)) requires about 2 minutes per photo. In this study we used up to 6 photos per plot
for a total office time of approximately 12 minutes. Overall, we believe the spherical photo

approach for estimating above ground biomass is more effectiveffatient than TLS.
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Chapter 3 Sector Subsampling for Basal Area Ratio Estimation: An

Alternative to Big BAF Sampling

Abstract

Big Basal Aredactor (big BAF) sampling is a widely used subsampling method to select
measuretrees. Several studies have shown big BAF sampling to be an efficient sampling
scheme. In this study we use sector sampling (Smith et al. 2008, For. Sci. B3}, & an
altemative subsample selection method. Based on some simulated mapped stands derived
from three balsam firAbies balsamgespacing trials in western Newfoundland, we show

that sector subsampling is comparable to big BAF sampling in terms of estimated mean
basal area ratios and their associated standard errors. Differences between big BAF
sampling and sector sampling methati®wed less than 1% difference across the three
sites. As with big BAF sampling, changes in sample intensity had no significant (p < 0.05)
effects on the accuracy of estimating mean biomass to basal area ratios and the resulting
estimated mean biomasses peit area.

Key Words: sector sampling, subsampling, basal area ratio estimation, sample

efficiency, big BAF sampling, biomass estimation

Introduction

Many forestlevel attributes, such as volume, biomass, and carbon, rely on individual tree
measurenas and allometric models (Kershaw et al. 2016). Direct measurement of these
attributes is often impractical, expensive, destructive, and, therefore limited to research

efforts to develop allometric relationships (Ketterings et al. 2001; Jenkins et 3). 200
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volume and biomass estimation, allometric models that include both diameter at breast
height (DBH) and total height (HT) are often more accurate and applicable to a wider range
of stand conditions and ages than models that only use DBH (HonerLE®6@ert et al.

2005; Ung et al. 2008; Kershaw et al. 201ywever, measurement of height is costly
relative to counting sample trees and measuring DBHSs (lles 2003; Lynch 2017; Yang et al.
2017).

Subsampling of plot trees has long been used in forestiary (lles 2003; Marshall et al.
2004). Unfortunately, many selection methods were ad hoc or haphazard at best (lles 2003)
with the potential of introducing selection bias at the subsampling stage. An easily
implemented solution to this is big Basal Afeactor sampling (BAF). Big BAF sampling

is a form of horizontal point sampling (HPS) that utilizes two angle gauges: a small one to
count Aino trees; and a | arger one to sel
Yang et al . asBr®tlr7e e s ol haer eimesed t o esti mat e
of interest (volume, biomass, carbon content, and so on) to tree basalvarea Y

@] 60 0; where XBAR is the tree attribute to tree basal area ratio of the ith trisethé
atribute of interest for the ith tree and BAthe basal area (cresectional area) of the ith

tree). The estimated mean XBAR across all measnaes is multiplied by the estimated
mean basal area per unit area determined from the count trees tolob&stirmated mean

per unit area estimate of the attribute(s) of interest.

Because plot to plot variability in tree counts is often much greater than variability in
XBAR between measuré&rees, sampling effort is concentrated on sampling more count
plots (les 2003; Marshall et al. 2004). Yang et al. (2019) developed methods for optimizing

small and large BAF choice for volume estimation and Chen et al. (2019) generalized those
48
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results for volume, biomass, and carbon content. Chen et al. (2020) furtheddmpli

BAF sampling on a foredevel scale to correct LiDARlerived enhanced forest inventory
estimates to develop bakee carbon estimates for a carbon offset project. The ability to
estimate biomass, and subsequently carbon, in a statistical acam@dtepsteffective
manner, is important for developing improved forest management projects for monetized
carbon offset projects (Chen et al. 2019, 2020).

While big BAF sampling is very efficient (in terms of its cwatiance tradeoff) and
logistically easy to implement in the field, it is just one of many potential subsampling
schemes that could be applied to the problem of efficiently selecting trees to measure (lles
2003 pp. 56567). Selection based on probability proportional to prediction and
systenatic list sampling are other potential methods commonly used (lles 2003). Sector
sampling (lles and Smith 2006; Smith and lles 2012) is another potential subsampling
scheme based on randomly selected sectors radiating from plot centers. Originally
develomd to sample small or irregutahaped forest areas (lles and Smith 2006), sector
sampling, though not widely applied, has the potential to be a very efficient sampling
scheme in certain situations. The sector orientation is randomly selected and wittiaes

the sector radiating from plot center to the boundary of the area of interest are measured
(les and Smith 2006; Smith and lles 2012). The angle of the sector is usually
predetermined and all trees within a sector will be sampled with equal ditgbabi

Sector sampling is commonly applied to small/fixackas regardless of boundary shapes

or vegetation types (lles and Smith 2006; Smith and lles 2012). This approach is an
unbiased sampling design when appropriate randomization procedures andirggtimat

procedures are used, because all trees within each sector are sampled from vertex point to
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the edge of the angle border (Lynch 2006) and can be scaled tolévedgtarameters. If
sector azimuths are chosen at random, tract totals and mean tbegestitan be estimated
using a simple expansion factor approach (lles and Smith 2006). Per unit area estimates
require a ratio of means approach to account for different sector sizes (Smith et al. 2008;
Smith and lles 2012). The simplicity of implementsegtor sampling in small areas makes

it a potentially ideal alternative to big BAF sampling in some sampling situations. To our
knowledge, no one has explored the potential of sector sampling as an alternative
subsampling scheme similar to big BAF sampling

The specific objectives of this study were: 1) Estimate the efficiency of sector sample
selection in comparison with big BAF selection for estimating aboveground biomass; and
2) Determine the effects of sample intensity across the three different glingam

selection methods used in this study.

Materials and Methods

Study sites

Data from three early spacing trials located on western Newfoundland Island (NL), Canada
were used in this stud¥igure 3. 1)The spacing trials were established in the eE9B0s

by the government of Newfoundland in cooperation with the Canadian Forest Service
(Donnelly et al. 1986). The sites were dominated by balsamliie¢ balsamed.) with

minor components of black sprud&¢ea mariangMill.) Britton, Sterns & Poggeb.) and

white birch Betula papyriferaviarshall). There were five spacing treatments: Control, or

no spacing, (S00), 1.2m spacing (S12), 1.8m spacing (S18), 2.4m spacing (S24) and 3.0m

spacing (S30). The treatments were arranged in a randomized conhmi&tedsign with
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3 replicates per site (3x3x5 = 45 permanent sample plots were used in this study). Each
treatment was applied to a 0.25 ha block (50m x 50m), and a circular permanent sample
plot (PSP) was established near the center of each block. TheiZeSRrried such that

there were approximately 100 trees per plot at the time of establishment.

Simulation of subsampling protocols

Each NL plot was expanded to a 1 ha fAmappe
and random sampling of individuale es from each PSPO6s tree |
Control plots (S00), locations were randomly assigned by generating random {x,y}
coordinates. For thinned plots, the 1 ha area was divided into cells based on average
spacing. For example, when appliedhe 2.4m spacing in simulations, the 1ha area was

divided into 2.4m x 2.4m cells. Within each cell, a tree was randomly located by generating

a random {x,y} coordinate within the bounds of the cell and a tree was randomly drawn

from the tree list for tha®SP with replacement.

A 2-M count BAF (i.e., each treed tallied = Zma' basal area) was simulated to select
count (Al NO0) trees for basal area esti mat|
selection methods were used to select trees for heiglgunezaent (Figure 3. 2B). The

first used a big BAF approach. Measurees were selected using a large BAF. We tested

five different big BAFs: 20; 30; 40; 50; and 60 M. The second method used sector sampling

to subsample count trees (SectorIN). Five d#fersector intensities, expressed as a
percentage of the full compass (360e) were
The midpoint azimuth of the sector was ranc

the sector were selected for measwetr{DBH and height (HT)). The third method used
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sectors to select trees, but independent of whether they were count trees or not. All trees
within the sector and within a specified distance from plot center (11.28m was used in these
simulations) were setted for measurement (DBH and HT). Again, we used five different

sector intensities: 1.2%, 1.0%, 0.7%, 0.5%, and 0.4%. The big BAF and two different sets

across thesamples (Table 3. 1). Three points were randomly selected within each 1 ha
simulated plot. At each sample point, the count trees and méetsesewere determined.
The simulations were repeated 100 times. The salkugh method (Ducey et al. 2004)

was ugd to account for any boundary overlap.
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(A) Simulated 1 ha plot

Control (S00)

maps by spacing treatment

1.2 m Spacing (S12)

(B) Measure-Tree Subsample Selection
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Figure 3.1 Simulation of (A) 1 ha spacing plots, and (B) count tree selection and the

three measurtee s

ubsample selection methods.

Biomass Estimation

Individual treebiomass was estimated for each tree in the simulated plots using the
Canadian National Biomass models (Lambert et al. 2005). We used Eq. 3 from Table 3. 4
in Lambert et al. (2005) which utilized both DBH and HT. Total tree biomass) (B&%
estimated by suming the separate component biomass estimates (wood, bark, branches,

and foliage). For the simulated 1habpl ot s,

53



was obtained by summing the biomass estimates across all trees and dividing by 1000
kgAtlonne

1 060 2

The estimated mean biomass to basal area @t §;'Y k3 Wwasiestimated from the
measuréetrees and used to estimate mean BM for the simulated subsampling methods

(Y6 Dusing estimated G

2 "0 2
where,

v o B B
3 o660

and p = number of count plots; BAthe BA per ha on th& plot; and Coup the number
of Ai no t"rplte Ehe estimatiprhod ¢ § depended on which subsampling
method was employed. Big BAF selection and SectorIN selection were both variable

probability methods and the mean ratio apprqé&arshaw et al. 2016yas used:

B R

(4a) 66 6 Y2

For the SectorDST method, measgtrees were selected with equal probability, therefore,

we used a ratio of means approéi€brshaw et al. 2016)

B
B 8

(4b) 666v§

Percent standard error fo¥é Owvas estimated from two independent variables based on
Br uc e 0 s (lles 2a003nMdrshall et al. 2004; Yang et al. 2017; Chen et al. 2020; Hsu

et al. 2020)
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) Pi QB0 Pi @0 Pi ®060°Y

where%se() is the estimated standard error as a percent of the estimated mean. Gove et al.
(2020)0s howed the relationship between Bruceods
Brucedos formula does i nvolbetweeraBA aral BBARMpt i on
Gove et al.(2020) found in simulations that the impact of nmwependence was
negligible. Forbi ‘@ 0, andPi ‘@ O O "Yor bigBAF and sectorIN selection, we used

the estimator derived from simple random sampling to estimatéastherror (se):

6a) | @ —

n
where x is either BA for the sample point or BBAR for the individual meatees s is
the estimated standard deviation, and n is sample size (number of sample points or number

of measurétrees).For sectorDST selection we us@kershaw et al. 2016)

B B B o)

6b) i ®6OY 5

where,"Y6 Uand "Y6 Uare the biomass estimates for individual sample plots and the
estimated meanitmass estimate for the meadirees;6 6and 6 0 are the basal areas
(crosssection areas) and estimated mean basal area-éacissn area of the measure
trees; and 0 O i¥the estimated mean biomass to basal area ratio from eq. 4b.

The three ifferent measurigree selection methods were compared on the baigobd,Y
%sep 0 0),¥mean biomass estimates and their distributions, equivalence tests and rank
correlations by study site and sample intensity. All simulations and analyses were

corduction in the R Statistical Languaff® Development Core Team 2019)
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Results

Estimated BBARs

Estimated 6 6sY ( K)drdkmthe 100 sample simulations using the simulated 1 ha plots

did not vary substantially by study site, meastree selection method, or sample intensity

(Table 3. 2, Figure 3. 3). Overall estimat@d 0 (fhean of the 100 simulated sample
means)raged from abdun RODdi KkkytAarhon Carmaskald0 k g A |
Pasadena (Table 3. 2). Cormack had greater variability in estimaied tian the other

two sites (Figures 3. 3 & 3. 4). Comparisons within study sites but across both measure
treesubsample selection method and meddtege sample intensity were much closer, with
differences consistently well below 1% of the estimdted 0sYTable 3. 2).

While overall estimated ¢ 0 &d not change across the range of sample intensities, the

range of estimated 6 0sYFigure 3. 3) and their associated standard errors (Figure 3. 4)

of estimatedd 6 0sYncreased with decreasing sample intensity (Table 3. 2). There were

slight biases observed between the overall estimatédosYandte fAtrueodo popul
0 6 O0sYFigure 3. 3) as calculated using all trees across the 1 ha simulated plots on each
study site. Here, bias is assessed relative to the mean computed from a large number of
repeated simulations, which stands in for the unknpapulation mean. The bias for

Roddi ckton was about twice that observed o
A43% on Cormack and Pasadena); however, thi:
with a potential error in measured height (almastlde all other trees). When this tree

was eliminated from both the population estimate and the méaserestimates, the bias

was reduced to just under 3%, as observed on the other two sites.
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Table 3.1 Mean number of measaitrees, standard errors (in parentheses) and range {in
brackets} sample selection methods for the 3 sites (Cormack, Pasadena, Roddickton) by
study site, and sample intensity. (Factor levels represent metric BAFs for big BAF

sampling and sector width aparcent of a circle for sector sampling)

Study Sample Sample Selection Method
Site Intensity big BAF SectorIN SectorDST
Level Size Level Size Level Size
Cormack 1 20 100 (7.9) 10 101 (8.2) 1.2 107 (9.6)
{79, 119} {76, 122} {87, 137}
2 30 67 (7.1) 7 71 (7.5) 1.0 90 (9.3)
{46, 82} {56, 91} {71,117}
3 40 50 (5.8) 5 50 (6.0) 0.7  61(7.3)
{38, 63} {36, 66} {41, 79}
4 50 40 (5.9) 4 41 (6.0) 05  45(6.8)
{26, 53} {27, 57} {29, 61}
5 60 34 (4.7) 3 30(4.6) 04  36(6.1)
{22, 43} {21, 41} {25, 53}
Pasadena 1 20 154 (8.4) 10 152 (9.8) 1.2 87(7.7)
{137, {130, 184} {68, 108}
2 30 102 (7.5) 7 107 (8.5) 1.0  72(7.8)
{83, 118} {82, 127} {55, 95}
3 40 77 (6.7) 5 77(6.8) 0.7 50 (6.7)
{63, 92} {62, 94} {32, 65}
4 50 62 (6.6) 4 61 (6.8) 0.5 35(6.19)
{50, 78} {45, 77} {22, 52}
5 60 51 (5.0) 3 46 (5.8) 04  29(4.9)
{39, 67} {33, 59} {20, 41}
Roddickton 1 20 116 (8.9) 10 114 (9.2) 1.2 115(9.9)
{88, 134} {93, 145} {94, 134}
2 30 77(7.8) 7 80 (7.9) 1.0  95(9.4)
{59, 96} {61, 99} {74, 123}
3 40 58(6.2) 5 57 (6.4) 0.7 68(6.8)
{44, 79} {35, 73} {50, 84}
4 50 46 (5.7) 4 46 (5.5) 0.5 46 (6.5)
{32, 59} {34, 61} {30, 63}
5 60 39 (5.6) 3 34 (5.7) 04  38(6.3)
{25, 52} {21, 53} {26, 56}
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Biomass estimates

Overall esti mat ed wariadby dite, reflacirg inhefent differeressA h a
in site productivity across the three sites (Table 3. 2, Figure 3. S1) with Pasadena >
Roddickton > Cormack. While overall mean biomass varied across the three sites,
estimated mean biomasses, like estedatnean BBARS, did not vary substantially by
measureétree selection method nor sample intensity (Table 3. 2). Similar to estimated
BBAR, the range of estimates and the associated standard errors for biomass increased with
decreasing sample intensity (TallgFigures 3. S1 & 3. S2). However, while meakure

tree sample sizes typically decreased by 70% (Table 3. 1), standard errors only increased
by 15% or less (Table 3. 2).

For the 100 sample simulations conducted on each site, the nominal 95% confidence
intervals included the fAtrued popul ation mea
measurétree selection methods x measuree sample intensities (Supplementary Figures
3.S313. S5). The Atrueodo popul at i onviduaktrees was ¢
on each simulated-ia plot and averaged across the 15 plots within each spacing trial. At
the largest measurgee sample intensities, the correspondences between estimated mean
biomass among the three meastnee subsample selection metkodere quite good
(Supplementary Figures 3. $63. S8; Table 3. 3). As sample intensity decreased, the
relationships became increasingly noisy (Supplementary Figuresi 3.5B), especially

for Cormack (Suppl ement ar y rrélatianaecreasel withS 6 ) .
decreasing sample intensity, while the minimum detectable negligible differences
increased (Table 3. 3). Even though MDNDs increased with decreasing sample intensity,

when expressed as a percentage of standard deviation (Tabler®sB were less than
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25%, which is generally considered sufficient to conclude the two samples are statistically

equivalent (Robinson and Froese 2004).

Discussion

Big BAF sampling is a weléstablished and increasingly used method for selecting a
subsamfe of measurirees in a variety of forest inventory applications (Corrin 1998;
Desmarais 2002; lles 2003; Marshall et al. 2004; Yang et al. 2017; Chen et al. 2019)
Because variability in counts of Aiam tree
the variability in the volume to basal ratio (Marshall et al. 2004; Yang et al. 2017), or
biomass to basal area ratio (Chen et al. 2019), big BAF sampling places inventory effort
on establishing more count plots than measuring sample trees (lles 28GBaMet al.

2004). The alternative selection methods proposed in this study using sector sampling were
comparable to big BAF measiiteee selection in terms of both average BBAR (Table 3.

2, Figure 3. 3) and percent standard error of mean BBAR (FigddeBifferences in mean
BBARs across the three meadiree selection methods averaged less than 0.2% across
the three spacing trials and five sample intensities (Table 3. 3). Because estimated biomass
per ha is simply BBAR multiplied by average BA (wWihiwas constant for all three sample
selection methods and meaduree sample intensities), biomass per ha did not vary

substantially among the measiiree selection methods as well (Tables 3. 2 & 3. 3).
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Table 3.2 Mean, standard error (in parentheses) and range (in brackets) for estimated

BBARs 9Dkomhkm bi omad)dgstudytsicennmeasstéed selection method
and sample intensity for the western Newfoundland (NL) spacialg.t{measuréree

sample intensities are defined in Tabl&)3.

Selection Sample big BAF SectorIN SectorDST
method intensity  BBAR Biomass BBAR Biomass BBAR Biomass
Cormack 1 3162 (43.0) 140.8 (4.0) 3157 (45.2)  140.6 (4.4) 3164 (55.0) 140.9 (4.4)
{3066, 3268} {131.9,150.9} {3004, 3305} {129.9,152.7} {2957, 3328} {129.3, 150.9}
2 3151(56.0) 140.3 (4.4) 3162 (48.3)  140.7 (3.6) 3156(66.4)  140.5 (4.5)
{3010, 3286} {128.3,150.0} {3008, 3262} {131.8,149.5} {2962, 3322} {128.5, 151.4}
3 3153(58.1) 140.4 (4.3) 3155 (65.9)  140.5 (4.6) 3147 (81.6)  140.1 (5.1)
{2975, 3285} {127.3,151.8} {2998, 3324} {130.3,151.2} {2917, 3304} {125.2, 153.0}
4  3155(68.9) 140.8 (4.5) 3147 (69.6)  140.5 (4.5) 3146 (83.3) 140.4 (5.3)
{2934, 3282} {128.1,154.3} {2956, 3285} {127.4,151.8} {2904, 3381} {128.9, 162.1}
5 3154 (71.2) 140.4 (4.3) 3151 (89.7)  140.3 (5.3) 3143 (103.7) 139.9 (5.0)
{2983, 3310} {128.2,152.2} {2899, 3405} {128.2,155.5} {2773, 3353} {127.4, 153.4}
Pasadens 1  3205(17.5) 218.7 (3.8) 3205 (20.0) 218.7 (3.9) 3201 (28.7) 2185 (4.2)
{3164, 3256} {209.3,226.9} {3149, 3261} {208.4,225.9} {3127, 3268} {207.5, 227.3}
2 3204 (255) 218.3(3.8) 3204 (24.5) 218.4 (4.1) 3199 (32.0) 218.0 (4.44)
{3148, 3272} {209.0,226.7} {3138, 3252} {208.3,227.3} {3120, 3314} {207.6, 230.3}
3 3205(28.1) 219.0 (3.9) 3205(27.9)  219.1(3.7) 3198 (43.1) 2185 (4.6)
{3132, 3258} {208.6,229.9} {3117, 3272} {208.8,227.3} {3098, 3307} {207.1, 231.6}
4 3207 (28.7) 218.8(3.4) 3209 (32.2) 218.9 (3.8) 3195 (49.7)  217.9 (4.4)
{3141, 3270} {210.3,227.1}  {3136,3282} {208.0,230.2} {3083, 3365} {208.2, 232.8}
5  3208(35.3) 2185 (3.9) 3209 (33.1) 2185 (3.7) 3207 (55.6) 218.4 (5.0)
{3123, 3297} {210.2,230.4} {3118, 3286} {209.7,231.2} {3052, 3339} {205.5, 228.7}
Roddicktor 1 2924 (26.3)  150.2(3.7) 2926 (24.7)  150.3 (3.5) 2924 (37.9) 150.1 (3.9)
{2860, 3003} {141.4,160.0} {2876, 3015} {140.7,159.9} {2835, 3021} {141.7, 160.3}
2 2930 (32.5) 150.7 (3.5) 2928 (35.8) 150.6 (3.5) 2933 (45.6) 150.9 (3.8)
{2848, 3000} {142.9,159.5} (2852, 3022} {142.4,159.7} {2834, 3059} {143.5, 160.7}
3 2928 (41.9) 150.0 (3.6) 2021 (42.1) 1496 (3.7) 2917 (52.0)  149.4 (4.1)
{2816, 3043} {139.5,159.4}  {2785,3037} {138.4,157.4} {2747, 3069} {138.7, 160.1}
4 2927 (42.3) 150.1 (3.7) 2926 (51.7)  150.0 (3.9) 2929 (68.3)  150.2 (4.9)
{2802, 3013} {141.9,162.5}  {2767,3027} {139.3,157.5} {2773, 3078} {137.8, 164.4}
5 2918 (50.2) 149.8 (4.0) 2923 (60.0)  150.1 (4.4) 2019 (67.8) 149.9 (4.8)

{2784, 3033}

{140.8, 159.5}

{2784, 3084}

{141.1, 160.9}

{2709, 3059}

{137.0, 160.4}
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Figure 3.2 Distribution of BBARS by study site, meastiree subsample selection method

and measurree subsample intensity for thMewfoundland (NL) spacing trials.
Horizontal black bars are the overall mean BBARs generated from each simulation method
under different measure intensities. Dashe:
Measure BAF, intensity is expressed in teohsnetric basal area factors?Zmai® per tree

tallied, for Sectors intensity is expressed in term of percent of full circle)

61



Figure 3. 3 Distribution of BBAR errors by study site, meastmee subsample selection
method and masuretree subsample intensity for the Newfoundland (NL) spacing trials.
Dark grey bars stand for the mean errors generated from each method under different
measure intensities. (For Measure BAF, intensity is expressed in terms of metric basal area
factors, ntha? per tree tallied, for Sectors intensity is expressed in term of percent of full

circle)
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