
Novel Methods for Estimating Above Ground Biomass 

 

by 

Xiao Dai 

Bachelor of Science in Forestry, Nanjing Forestry University, 2018 

A Thesis Submitted in Partial Fulfillment  

of the Requirements for the Degree of  

 

Master of Science in Forestry 

in the Graduate Academic Unit of Faculty of Forestry and Environment Management 

 

Supervisor:              John A. Kershaw Jr., PhD, FOREM, University of New Brunswick 

Examining Board:   Mark Ducey, PhD, Adjunct FOREM, University of New Hampshire 

                                Lloyd Waugh, PhD, Civil Engineering, University of New Brunswick  

                                

 

This thesis is accepted by the 

Dean of Graduate Studies 

 

 

 

THE UNIVERSITY OF NEW BRUNSWICK 

February, 2021 

©Xiao Dai, 2021 



ii  

 

ABSTRACT 

Forest biomass is increasingly important for calibrating worldwide carbon changes and 

ensuring sustainable forest management. However, there are no consistent standards for 

aboveground biomass (AGB) estimation methods. Direct field estimation is costly and 

destructive. We explored alternative methods for estimating AGB based on different 

sources of ground-based remote sensing data. We compared allometric equations derived 

from metrics extracted from terrestrial laser scanning (TLS) to equations derived from 

metrics extracted from spherical images. Spherical image metrics consistently performed 

better than TLS metrics. Alternatively, we developed sector subsample selection methods 

that utilized only measurements from spherical photos with a smaller subsample of angle 

sample counts to correct for tree occlusion. The sector subsampling methods were 

comparable to widely used big BAF subsampling and were much more efficient for 

estimating AGB than the allometric equations. Sector subsampling has great potential to 

reduce costs for AGB estimation and enabling access to monetized carbon markets.  
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Chapter 1 General Introduction  

1.1 Importance of Estimating Biomass 

Biomass is important in understanding and tracking change in the global carbon cycle 

(Houghton 2005; Le Toan et al. 2011). Forest biomass, which is related to global climate 

change, carbon content and forest management, has been recognized as an important input 

to Earth system models (Herold et al. 2019) and is also an important component of a healthy 

sustainable environment (Bartuska 2006). Due to the increasing attention on mitigating 

climate change and growing monetized carbon markets (Brown 2002), quickly quantifying 

forest biomass is extremely important for forest and business management decision-

making (Brown 1999; Pearson et al. 2007; Chen et al. 2019). Because estimating below 

ground biomass is difficult, most research has focused on above ground biomass (AGB, 

(Lu et al. 2016). And the aboveground biomass production validation should be consistent 

across the world (Duncanson et al. 2019).  

Although field measurement of forest biomass provides the most accurate estimates (Lu et 

al. 2016), traditional biomass measurement in the field and post validation is costly, 

destructive, labor intensive and time-consuming. To estimate biomass, the destructive 

harvest is required to dry and weight all parts of individual tree biomass, then sum up the 

biomass for a single tree and expand the single tree biomass to plot, stand or strata level 

estimates, which wastes lot of money and time (Kershaw et al. 2016) . New approaches 

have been developed to estimate AGB more efficiently such as application of allometric 

equations, biomass expansion/conversion factors, models based on remote sensing data to 

estimate aboveground biomass (Wang et al. 2009; Lu et al. 2016; Yang et al. 2017). 
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Spherical images also showed potential to estimate forest attributes of interest (Wang 

2019). Nowadays, variables based on forest inventory data such as DBH, height, LiDAR 

point clouds or volume data can be applied into allometric equations to establish models 

for biomass estimation (Somogyi et al. 2007), which  is much more efficient than 

traditional biomass measurement. 

1.2 Objectives of this Thesis 

The overall objectives of this thesis were to develop new methods for estimating per unit 

area aboveground biomass using spherical photos and to compare these methods. Model-

assisted estimation based of spherical photos and terrestrial LiDAR will be developed and 

compared with sample-assisted methods developed for implementation with spherical 

photos. 

1.3 Structure of Thesis 

This thesis is composed of an introductory chapter, 3 paper chapters and a conclusions 

chapter.  

Chapter 2 ñComparison of Biomass Estimation using Spherical Images versus Terrestrial 

LiDAR Scanning in Atlantic Canadaò, model-based biomass estimation methods were 

applied using two sources of ground-based remote sensing: terrestrial LiDAR and spherical 

images. The two methods were compared to determine which approach performed best. 

This was the first study to compare TLS and spherical-camera-based metrics and their 

ability to predict above ground biomass. The two sources of ground-based remote sensing 

were compared on the basis of how well different metrics extracted for the data sources 
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were able to predict above ground biomass in western Newfoundland Island. Authorship 

on this chapter was: Dai, Xiao; Yang, Ting-Ru; and Kershaw, John A.  

Chapter 3 developed the concept of sector subsampling as an alternative subsample 

selection method to big BAF subsampling. The subsampling methods selected measure-

trees for biomass estimation and the estimation of the biomass to basal area ratio (BBAR). 

This chapter is the first study to apply sector sampling as a subsampling protocol similar 

to big BAF sampling. Two different methods of sector tree selection are compared to big 

BAF sampling. Both mean and standard errors of BBAR and biomass per ha are compared. 

This chapter has been submitted to the Canadian Journal of Forest Research and the authors 

were: Dai, Xiao; Ducey, Mark; Kershaw, John; and Wang, Haozhou.  

In Chapter 4 we applied sector subsampling to spherical image analysis for biomass 

estimation. We showed that sector sampling can be effectively applied using spherical 

images even though only visible portions of the sectors were measurable. Errors were 

comparable to those obtained in Chapter 2 with only a fraction of the measure-trees 

selected. A hierarchical sampling design was developed to correct for tree occlusion and 

Bruce's formula was generalized for more the two means and their associated errors. The 

methods developed in this chapter do require any field measurements of trees, since all tree 

measurements can be obtained directly from the spherical images. This chapter has been 

submitted to Forestry: An International Journal of Forest Research, and the authorship of 

this chapter was: Dai, Xiao; Ducey, Mark; Wang, Haozhou; Yang, Ting-Ru; Hsu, Yang-

Han; and Kershaw, John A.  
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In Chapter 5, the methods presented in Chapters 2, 3, and 4 were compared in terms of 

levels of effort required to implement and costs of equipment and processing time. 

Suggestions for future developments and future research were made. 
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 Chapter 2 Comparison of Biomass Estimation using Spherical Images 

versus Terrestrial LiDAR Scanning in Atlantic Canada 

Abstract 

Biomass is an important ecosystem measure. Measurement of biomass from destructive 

samples is labor intensive and difficult to update quickly. The use of allometric equations 

requires extensive field data, which is also expensive to acquire and equally difficult to 

update. Remote sensing is a means of estimating biomass quickly through model-assisted 

techniques. In this study, two terrestrial remote sensing sources, a terrestrial LiDAR 

scanner (TLS) and a 360° spherical camera, were evaluated based on model-assisted 

approaches. Several TLS metrics based on height quantiles and density measure were 

extracted from TLS scans. Photo basal area (PBA) was extracted from spherical photos at 

different heights above ground. Nonlinear regression models were developed using the 

different metrics from each remote sensing technique. Models based on TLS metrics 

explained between 3% and 23% of the variation in stand-level biomass, while models based 

on PBA explained 19% to 74% of the variation.  In this study, 360° spherical camera 

consistently provided model estimates that had lower rMSE than the models developed 

from TLS. Averages of estimates of PBA from multiple sample locations within a sample 

plot or averages across multiple heights produced better models than PBA estimates from 

single sample locations within a plot. Stand structural diversity and species composition 

negatively impacted model prediction ability for both TLS and spherical images. Given the 

cost differences, field acquisitions times, and post-processing times, the estimates from a 
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360° spherical camera provide an accurate and affordable alternative method for rapidly 

estimating biomass in Atlantic Canada. 

Introduction  

Biomass at global, regional or local scales is an important ecosystem measure of the Earthôs 

carbon cycle (Le Toan et al. 2011). Forest biomass, which is closely related to carbon 

content within the forest, is also an important component of a healthy sustainable 

environment (Bartuska 2006). Due to the increasing attention on mitigating climate change 

and growing monetized carbon markets (Brown 2002), quickly quantifying forest biomass 

is extremely important for forest and business management decision-making (Brown 1999; 

Pearson et al. 2007; Chen et al. 2019). Collecting inventory parameters (e.g., diameter at 

breast height, DBH; and height) and sufficient destructive samples across a range of tree 

sizes to develop allometric equations for biomass estimation is time-consuming, subject to 

measurement error, and difficult to implement across large areas (Lu 2006). Development 

of such allometric equations are usually limited to research projects rather than 

implemented in operational inventories (Kershaw et al. 2016). Even collecting the data 

necessary to use allometric equations is costly and requires careful planning to produce 

cost efficient, low error estimates (Husch 1980; Lynch 2017; Yang et al. 2017). Developing 

efficient approaches to estimate biomass using advanced methods is required to reduce 

field inventory costs.  

Light Detection and Ranging (LiDAR), which can provide high-resolution three-

dimensional (3D) point clouds, has emerged as one of the promising sources of remote 

sensing data to estimate area-based forest attributes (Næsset 2002; Bouvier et al. 2015), or 
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individual tree analyses (Belton et al. 2013; Greaves et al. 2015). Generally, there are two 

broad types of LiDAR: airborne LiDAR scanning (ALS); and terrestrial LiDAR scanning 

(TLS). ALS has been widely used to characterize forest structural attributes (e.g., canopy 

height profiles and some individual tree attributes); however, because of tree occlusion, 

difficulties in characterizing structural diversity and vertical distribution by vegetation 

component (e.g., foliage distributions, branch identification, crown transparency and size 

distribution) still exist (Hilker et al. 2012; White et al. 2016). In comparison, TLS has 

shown promise to enhance airborne LiDAR by providing high-resolution scans of forest 

structure from the ground up (Ducey and Astrup 2013; Astrup et al. 2014).  

Various approaches of biomass estimation using LiDAR data have been proposed. One 

common approach is model generation by combining field measurements and LiDAR 

attributes to build predictive models for area-based biomass estimation (Kankare et al. 

2013). A variety of LiDAR attributes are extracted from point clouds. These attributes 

generally fall into one of four categories: 1) height- or canopy-based; 2) horizontal density-

based; 3) horizontal and vertical variability; and 4) individual tree segmentation (Ayrey et 

al. 2019). Although various estimation approaches are advocated, which approach is the 

most efficient for biomass estimation has not been systematically explored. With high 

equipment expense, long field scanning times, extensive point cloud processing. and 

problems associated with detecting canopy surfaces and occluded trees, the efficiency of 

area-based biomass estimation via TLS remains an unknown (Lin et al. 2018), especially 

in terms of operational inventory. 
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Using high-resolution panoramic photography is an alternate, cost-effective way to 

improve forest inventory efficiency (Dick et al. 2010; Lu et al. 2019) and perhaps biomass 

estimation. Hemispherical panoramas are obtained by taking a series of photographs with 

a normal camera and a specialized device to precisely move the camera through the 

360°/180° space, then stitching the multiple photographs together. The resulting 

hemispherical panoramas have a 360° horizontal and 180° vertical field of view and can 

be used to estimate tree attributes (Dick et al. 2010; Fastie 2010; Perng et al. 2018; Lu et 

al. 2019). Several close-range terrestrial photogrammetric approaches are used to obtain 

forest inventory attributes from hemispherical panoramic photographs. For example, Lu et 

al. (2019) recently applied a pinhole camera model and showed the potential for estimating 

volume of individual trees. However, one disadvantage of their approach was that a target 

of known size and the horizontal distance between the camera and sample tree were 

required to scale DBH. In another approach, Perng et al. (2018) used stereoscopic 

techniques to triangulate trees, obtain photo scale, and subsequent tree measurements. 

These approaches are time-consuming and labor intensive to implement on each tree in the 

field.  

An alternative approach is to use the hemispherical panoramas as photo-based basal area 

plots and apply horizontal point sampling (HPS) principles as originally proposed by 

DeCourt (1956), and later revived by Stewart (2004), Dick (2012), and Fastie (2010). For 

photo-based HPS, an angle gauge, defined in terms of photo pixels, is used to select tally 

trees. Basal area per unit area is then calculated from the number of tally trees without any 

tree measurements required in the field (Bitterlich 1984; Iles 2003; Kershaw et al. 2016). 
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Compared with traditional field work, using high-resolution panoramic photography saves 

time and costs (Fastie 2010; Perng et al. 2018). While there are several advantages to using 

hemispherical panoramas, they have limitations similar to TLS. For example, the 

specialized devices to precisely move the camera through the 360°/180° space are costly 

and bulky to carry through the woods; acquisition times in the field can be lengthy; the 

multiple images require special software to stitch the images together; stitching potentially 

leads to errors; the stitched photographs then have to be processed to obtain the required 

measurements; and the issue of occluded trees is still problematic. In many respects, both 

hemispherical panoramas and TLS are exchanging high field labor costs for high 

equipment costs and office labor costs associated with post-field processing.  

Recently, introduced consumer-grade 360° spherical cameras have the potential to address 

several of the current shortcomings of both TLS and hemispherical panoramas. These new 

cameras use two fixed hemispherical lenses to obtain a full 360°/360° spherical 

photograph. The two hemispherical photos are stitched together using the onboard camera 

software and the camera is controlled by a smartphone. Image acquisitions takes seconds 

and multiple images per sample location are obtained very rapidly. Wang (2019) and Wang 

et al. (2020) demonstrated how these images are used as photo-based HPS plots and applied 

spherical stereography to obtain estimates of tree DBH and total height. Mulverhill et al. 

(2019) used spherical images and structure from motion to develop 3D point clouds from 

which tree measurements were then extracted. The low cost, quick acquisition time, and 

small, compact size make these spherical cameras a more attractive alternative to both TLS 

and hemispherical panoramas.  
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Building upon the work of Wang et al. (2019) and Wang (2020), we propose to compare 

area-based estimates of biomass based on TLS attributes to estimates based on attributes 

extracted from spherical photos. To evaluate the performance of the two tools under 

different degrees of forest structural complexity, data collected from western 

Newfoundland (lower forest structural complexity) and Noonan Research Forest (higher 

forest structural complexity) in central New Brunswick are used in this study. Advantages 

and disadvantages of the two approaches are discussed.  

Materials and Methods 

Study sites 

Data from two different research projects were used in this study. The first set of data 

came from three early spacing trials in western Newfoundland, Canada (Figure 2. 1). The 

second data set came from the Noonan Research Forest located in central New 

Brunswick, Canada (Figure 2. 1). 

Early Spacing Trials in western Newfoundland  

In the early 1980s, the government of Newfoundland, in cooperation with the Canadian 

Forest Service, established a series of early spacing trials in balsam fir (Abies balsamea L.) 

and black spruce (Picea mariana, (Mill.) Britton, Sterns & Poggenb.) dominated stands 

across Newfoundland island (Donnelly et al. 1986). In this study, 3 balsam fir trials located 

in western Newfoundland (NL) were used: Pasadena, Cormack, and Roddickton (south to 

north in Figure 2. 1). The spacing trial plots were arranged using a randomized complete 

block design with 3 replicates per site. There were 5 spacing treatments: Control or no 
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spacing (S00), 1.2m spacing (S12), 1.8m spacing (S18), 2.4m spacing (S24) and 3.0m 

spacing (S30). Each treatment was applied to a 0.25 ha block (50m x 50m), and a circular 

permanent sample plot (PSP) was established near the center of each block. There was a 

total of 45 PSPs from the NL spacing trials used in this study. 

 

Figure 2. 1 Study site locations in Newfoundland and New Brunswick. 

Because of the large differences in densities among the 5 treatments, the PSP radii varied 

by spacing treatment such that approximately 100 trees were measured on each PSP. The 

PSP radii by spacing treatment were: S00 = 5.2m; S12 = 7.2m; S18 = 10.4m; S24 = 15.0m; 

and S30 = 18.0m.  



 

14 

 

Trees taller than breast height (1.3m) were tagged with a unique tree number, identified by 

species, and diameter at breast height (DBH; nearest 0.1cm) and total height (HT; nearest 

0.1m) were measured using a diameter tape and a telescoping height pole, respectively. 

Measurements were made immediately following spacing treatment and at intervals of 3 

to 5 years with the last measurements being 2017 for Roddickton, 2013 for Pasadena, and 

2013 for Cormack. A summary of field measurements is shown in Table 2. 1.  

Noonan Research Forest (NRF) 

The Permanent Sample Plots (PSPs) located on the Femelschlag Research Area within the 

Noonan Research Forest (NRF, Figure 2. 1) comprised the second data set used in this 

study. The Noonan Research Forest is managed by the University of New Brunswickôs 

Faculty of Forestry and Environmental Management and is located approximately 30 km 

northeast of Fredericton, NB, Canada. The NRF is 1532 ha and the Femelschlag Research 

Area is approximately 80 ha. 
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Table 2. 1 Mean, standard deviation (in parentheses) and range (in bracket) for diameter 

at breast height (DBH, cm), total height (HT, m), stem density (Density, stemsĀha-1), basal 

area (BA, m2ha-1), and biomass (tonnesĀha-1) by spacing treatments for the 45 

Newfoundland (NL) spacing trials and overall for the 83 Noonan Research Forest (NRF) 

plots. 

Study  Spacing Parameter 

Site Treatment DBH 

(cm) 

HT 

(m) 

Density 

 (stemsĀha-1) 

BA  

(m2ha-1) 

Biomass 

(tonnesĀha-1) 

NL Control 8.5 (1.51) 

 

8.4 (1.34) 

 

11000 (3400) 69 (7.8) 200 (19) 

   { 6.9, 11.1} { 6.2, 10.3} 

 

{ 4800,16000} 

 

{ 55, 83} { 170, 230} 

 1.2m 11.9 (2.97) 

 

9.4 (1.90) 5100 (1400) 58 (10.6) 

 

180 (42) 

  { 8.5, 16.8} {7.3, 12.4} 

 

{3000,6800} { 44, 75} { 130, 250} 

 1.8m 13.3 (2.09) 9.1 (1.54) 2900 (350) 43 (11.0) 

 

130 (39) 

  {9.9, 16.0} { 7.3, 11.3} { 2400, 3300} { 28, 63} { 80, 200} 

 2.4m 16.2 (1.33) 10.1 (1.18) 1800 (450) 40 (9.6) 130 (32) 

  {14.2, 18.7} {8.1, 11.4} { 1300,2500} { 29, 59} { 90, 190} 

 3.0m 17.7 (1.87) 

 

10.0 (1.15) 1100 (150) 30 (7.0) 100 (25) 

  { 15.2, 20.3} { 8.7, 11.8} 

 

{ 900,1300} { 21, 40} {70, 140} 

NRF - 15.5 (3.10) 12.4 (1.76) 1900 (800) 41 (6.7) 180 (41) 

  {9.7, 24.5} {8.7, 17.4} {600, 4450} {21, 55} {80, 310} 
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Species composition was typical of the Acadian Forest region (Loo and Ives, 2003; Rowe, 

1972) with stand composition ranging from relatively pure conifer species to mixed 

intolerant hardwood stands and mixed hardwoodïconifer stands. Balsam fir was abundant 

and found in almost every PSP. The NRF was predominantly composed of mature stands 

(>70 years old). Compared to the NL spacing trials, the PSPs from the NRF provided a 

dataset with more complex stand structures. Eighty-three 0.04 ha fixed area PSPs were 

established on a 100 m by 100 m sample grid for monitoring long-term response to 

silvicultural treatments. The PSPs were circular plots and all trees within 11.28m of plot 

center were tagged with unique tree numbers within each plot. All live trees Ó 6.0 cm DBH 

were identified by species, and both DBH (nearest 0.1cm) and HT (nearest 0.1m) were 

measured in 2014. DBH was measured with a diameter tape and HT using a TruPulse laser 

hypsometer. A summary of observed field data for NRF is shown in Table 2. 1. 

Biomass Estimation 

The species-specific Canadian National Biomass equations developed by Lambert et al. 

(2005) were used to estimate individual tree biomass. The equations containing both DBH 

and HT (Eq. 3, Table 2. 4 in Lambert et al. 2005)  were used in this study. The individual 

biomass components (wood, bark, branches, and foliage) were separately estimated, and 

total tree biomass was obtained by summing these components for each tree. Biomass per 

ha was obtained by multiplying each treeôs biomass by its associated expansion factor (EF) 

and summing across all trees on each plot (Kershaw et al. 2016): 

2

10,000

plot size(m )
EF=          (1) 
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With the NL data, EF varied by spacing treatments, while it was fixed (i.e., EF = 25) for 

the NRF data. Field biomass estimates for both data sources are shown in Table 2. 1.  

Terrestrial LiDAR Scanning and Processing 

TLS scans were obtained using a Faro X330 phase-shift scanner (horizontal from 0° to 

360° and vertical from 90° to -60°) with a shortwave infrared wavelength of 1550 nm. To 

balance the needs of scan quality and scan duration, 3 scans at 1/4 resolution (point spacing 

of 6.14 mm at a 10 m range) and 4X quality with the in-built GPS were completed for each 

scan (FARO Technologies Ltd, 2016). It required around 12 minutes per scan. Multiple 

scans on each plot were used to minimize tree occlusion. Scans were made at half the plot 

radius along azimuths of 120°, 240°, and 360°. TLS scans were obtained in August of 2017 

in NL and in July of 2018 in the NRF.  

The 3 scans obtained at each PSP were post-processed and stitched together using the 

FARO® SCENE software (FARO Technologies Ltd, 2016). The automatic matching 

algorithms often failed to produce an acceptable coregistered point cloud, so manual 

registration of scans using spherical reference targets placed within the PSPs was required. 

The filtering of individual point clouds to remove points outside the plot area was carried 

out after registration. 

LiDAR Metrics  

Area-based estimates built from LiDAR metrics using statistical techniques is a common 

method used for LiDAR analysis and was used in this study. Many studies show strong 

relationships between biomass and LiDAR metrics (Hilker et al. 2010; Greaves et al. 2015; 
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Palace et al. 2016). There are four major types of LiDAR metrics, including height-based 

metrics, density-based metrics, structure variability and individual tree segmentation. In 

this study, we focused on height-based metrics and point cloud densities at 4 different 

heights above ground (1.6m, 2.6m, 3.6m, 4.6m). These heights were chosen to correspond 

to the heights at which spherical image were obtained (Section 2.3). There were 12 metrics 

extracted from the LiDAR point clouds (Table 2. 2). 

Spherical Image Acquisition and Processing 

Spherical images were obtained using a Ricoh Theta S 360° camera (Ricoh Imaging 

Company, LTD 2016). For the PSPs in NL, spherical images were obtained at the same 3 

locations used for TLS. However, in the NRF, spherical images were only obtained at the 

plot center (these images were originally obtained for a different analysis, thus the different 

protocols). At each spherical image acquisition location, spherical images were obtained 

at heights of 1.6m, 2.6m, 3.6m, and 4.6m using a tripod-stabilized height pole. 
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Table 2. 2 LiDAR metrics and associated descriptive statistics (mean ± stand deviation) 

for Newfoundland (NL) and the Noonan Research Forest (NRF). 

Metric  Definition  Study Site 

  NL NRF 

MaxHT Maximum height (m) 13.31 ± 2.98 23.25 ± 3.10 

MeanHT Mean height (m) 2.41 ± 0.52 2.82 ± 0.66 

HTmaxDens 
Height of the maximum density of 

LiDAR returns (m) 

2.28 ± 1.01 1.89 ± 0.97 

DensA16 
Density of LiDAR returns (number 

per m³) above 1.6m height 

0.35 ± 0.15 0.37 ± 0.07 

DensA26 
Density of LiDAR returns (number 

per m³) above 2.6m height 

0.33 ± 0.15 0.35 ± 0.07 

DensA36 
Density of LiDAR returns (number 

per m³) above 3.6m height 

0.29 ± 0.15 0.32 ± 0.08 

DensA46 
Density of LiDAR returns (number 

per m³) above 4.6m height 

0.23 ± 0.15 0.29 ± 0.08 

DensH16 
Density of LiDAR returns (number 

per m³) at 1.6m ± 0.05m 

0.35 ± 0.15 0.37 ± 0.07  

DensH26 
Density of LiDAR returns (number 

per m³) at 2.6m ± 0.05m 

0.33 ± 0.15  0.35 ± 0.07 

DensH36 
Density of LiDAR returns (number 

per m³) at 3.6m ± 0.05m 

0.29 ± 0.15 0.32 ± 0.08 

DensH46 
Density of LiDAR returns (number 

per m³) at 4.6m ± 0.05m 

0.23 ± 0.15 0.29 ± 0.08 

Kurtosis Kurtosis of return heights 3.21 ± 0.83 6.04 ± 3.16 
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The primary variable extracted from the spherical images was photo basal area per unit 

area (PBA) at image height. For each spherical image, the PBA at the camera center was 

extracted using a custom software package (Pano2BA) developed by Wang (2019) and 

Wang et al. (2020). The Pano2BA software implements a photo-based HPS protocol 

(DeCourt 1956; Stewart 2004; Fastie 2010; Wang 2019). Spherical images were read into 

the software and displayed on the screen. With the use of the target marking option, a 

horizontal line was superimposed on the image at the vertical center. The target was scaled 

to represent a specified basal area factor (BAF). Then, the target was moved along the 

image center line and trees appearing larger than the target were marked using a mouse 

click. PBA was then the number of marked trees multiplied by the BAF.  

As mentioned above, a common issue for any fixed ground-based remote sensing device 

is occluded trees. Occluded trees result in PBA underestimating field BA because trees that 

should be counted are missed because they are hidden by closer trees (Dick 2012; Wang et 

al. 2020). To minimize tree occlusion with the TLS scanner, we used multiple TLS scans 

and co-registration. Similarly, multiple PBA estimates and averaging was used to reduce 

the impact of occluded trees on the spherical images (Wang et al. 2020). Thus, there were 

3 potential PBA variable combinations: 1) single PBA estimates at a single location and 

image height (PBA(S)); 2) averages of multiple PBA from different image locations, but 

single image heights (PBA(A)); and 3) averages of PBA across different image heights at 

either a single image sample point or multiple sample points (PBA(*)).  
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Table 2. 3 Photo metrics (photo basal area, PBA) and associated statistics (mean ± 

standard deviation) in Newfoundland (NL) and the Noonan Research Forest (NRF). 

Metric  Definition 1 Study Site 

  NL NRF 

PBA(S)1.6                                            PBA extracted from a single 

location (S) at1.6m above ground 
35 ± 14.1 29 ± 7.8 

PBA(S)2.6 PBA extracted from a single 

location (S) at 2.6m above ground 
31 ± 13.4 27 ± 8.0 

PBA(S)3.6 PBA extracted from a single 

location (S) at 3.6m above ground  
27 ± 12.8 26 ± 7.4 

PBA(S)4.6         PBA extracted from a single 

location (S) at 4.6m above ground   
22 ± 11.4 24 ± 7.6 

PBA(A)1.6 Average PBA extracted from 3 

locations at 1.6m above ground 
34 ± 12.3 - 

PBA(A)2.6 Average PBA extracted from 3 

locations at 2.6m above ground 
31 ± 11.9 - 

PBA(A)3.6 Average PBA extracted from 3 

locations at 3.6m above ground 
26 ± 11.4 - 

PBA(A)4.6 Average PBA extracted from 3 

locations at 4.6m above ground 
21 ± 10.6 - 

PBA(*)1.6,2.6 Average of PBA extracted from 

1.6m and 2.6m above ground  
32 ± 12.0 28 ± 7.6 

PBA(*)1.6,3.6 Average of PBA extracted from 

1.6m and 3.6m above ground  
30 ± 11.7 28 ± 7.3 

PBA(*)1.6,4.6 Average of PBA extracted from 

1.6m and 4.6m above ground  
28 ± 11.1 27 ± 7.3 

PBA(*)1.6,2.6,3.6,4.6 Average of PBA extracted from all 

heights  
28 ± 11.3 27 ± 7.2 

13 locations for NL center location for NRF  
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Biomass Estimation using TLS and PBA metrics 

After exploring a number of linear and nonlinear functions, the power function proved to 

provide the best estimates of biomass for a majority of the TLS and PBA metrics. The 

single variable form of the power function was: 

"-!33 = b0ὢ                                                                                                                   (2) 

where "-!33 is the model estimated biomass in the i th PSP, Xi = a LiDAR (Table 2. 2) or 

photo (Table 2. 3) metric for the ith PSP, and bj are nonlinear regression parameters. Models 

were evaluated based on root mean square error (rMSE) and the nonlinear pseudo-R2: 

Ò-3%
В -

                                                                                         (3) 

where BMASSi = the field measured estimate of biomass in the ith
 PSP, "-!33 is the 

model estimated biomass in the i th PSP, and n is the number of PSPs. To facilitate 

comparisons across spacing treatments and study locations, rMSEs were expressed as 

percentages of mean of field biomass (BMASS). The Kolmorgorov-Smirnov two-sample 

distribution test (K-S test; Zar 2009) was used to assess statistical differences between field 

and predicted biomass distributions. In addition, the two one-sided t-test for equivalence 

(TOST test, Robinson and Froese 2004) was used to compare predictions to field measures 

and predictions across models based on different LiDAR and photo metrics.  The K-S tests 

were conducted using the ks.test() function in the base contributions (Arnold et al. 2013; 

R Development Core Team 2019) and the TOSTs were conducted using the tost() function 

from the equivalence package (Lakens 2017) in R. 
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Finally, we explore the impacts of stand structure on the resulting model errors. For the NL 

data, the best fitting TLS model and the best fitting PBA model (based on the 

lowest %rMSE) by spacing treatment were compared. For the NRF data, we calculated a 

basal area weighted Shannonôs species diversity index (Staudhammer and LeMay 2001; 

McElhinny 2005) and Staudhammer and LeMayôs (2001) diameter-height bivariate 

structural diversity index for each plot and then examined residuals from the best fitting 

TLS and PBA models graphically. All analyses were conducted in the R statistical 

language (R Development Core Team 2019). 

Results  

Models derived from TLS Metrics 

Table 2. 4 shows %rMSEs and pseudo-R2s for single variable power functions by LiDAR 

metrics and study sites.  The ranges in %rMSE and pseudo-R2 values for NL were larger 

than what were obtained for NRF across the different LiDAR metrics (Table 2. 4). 

The %rMSE of 12 TLS models ranged from 19.22 to 33.15 for NL, and 19.82 to 22.42 for 

NRF. While %rMSEs were generally smaller for NRF (less error) compared to NL, the 

pseudo-R2s were also smaller (indicating less variation explained). For NL, density-based 

metrics generally performed better than height-based metrics (Table 2. 4). Metrics 

representing densities above specified heights (DensA##) performed better than density-

based metrics at given height slices (DensH##; Table 2. 4). This was similar for the NRF; 

however, the differences were smaller. DensA46 was the best performing LiDAR metric 

for the NL data (best model was TLS07), while MeanHT was the best for the NRF data 

(best model was TLS02) with DensA46 just slightly larger (Table 2. 4). In no case did any 
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combination of multiple TLS metrics result in models with significant improvements in fit 

(results not shown). The estimated coefficients and their associated standard errors for all 

models on both study sites are shown in supplemental table S1. 

Models derived from Spherical Images 

For the NL data, %rMSEs were substantially smaller for biomass estimates derived from 

PBA (Table 2. 5) compared to those derived from LiDAR metrics (Table 2. 4).  Likewise, 

the associated pseudo-R2 values were much larger (Table 2. 5). For the NRF data, both 

the %rMSEs and pseudo-R2 for the PBA models (Table 2. 5) were comparable to those 

obtained for the TLS models (Table 2. 4). As with the TLS models, all the pseudo-R2 values 

for the PBA models in NRF were smaller than the ones in NL. The %rMSE of 12 PBA 

models ranged from 17.17 to 22.95 for NL, and 19.83 to 20.38 for NRF. The estimated 

coefficients and their associated standard errors for all PBA models for both study sites are 

shown in supplemental table S1. 
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Table 2. 4 Percent root mean square error (%rMSE) and nonlinear pseudo-R2 for biomass 

estimation models built using individual LiDAR metrics for the Newfoundland (NL) and 

the Noonan Research Forest (NRF). Bold italic represents models that had no significant 

(p > .05) relationships. 

Model LiDAR Metric1 NL  NRF 

Number  %rMSE Pseudo-R2  %rMSE Pseudo-R2 

TLS01 MaxHT 30.50 0.18  21.28 0.11 

TLS02 MeanHT 33.15 0.03  19.82 0.23 

TLS03 HTmaxDens 28.07 0.30  22.20 0.03 

TLS04 DensA16 25.59 0.42  20.81 0.15 

TLS05 DensA26 24.38 0.47  20.41 0.18 

TLS06 DensA36 22.03 0.57  20.11 0.21 

TLS07 DensA46 19.22 0.67  19.92 0.22 

TLS08 DensH16 32.95 0.04  21.87 0.06 

TLS09 DensH26 32.78 0.05  21.92 0.06 

TLS10 DensH36 32.81 0.05  22.33 0.02 

TLS11 DensH46 30.85 0.16  22.42 0.01 

TLS12 Kurtosis 32.83 0.05   21.85 0.06 

1see Table 2. 2 for definitions of each LiDAR metric 

For the NL data, models derived from the averages of PBA from 3 photo sample locations 

performed better than models derived from PBA based on a single photo sample location 

(compare PBA(S)## to PBA(A)## in Table 2. 5). Averaging across multiple photo heights 
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was better than using a PBA estimate from a single height (compare PBA(*)## to 

PBA(S)## in Table 2. 5). For the NRF data, using a single average across different photo 

heights was statistically more significant than using each height as an independent variable, 

though the model improvements were small (compare PBA(*)## to PBA(S)## in Table 2. 

5). However, it should be noted that for the NL data, PBA(*)## represents averages that 

are based on averages of three photo samples taken at each height, then averaged across 

different heights (i.e., averages of 6 or 12 PBAs), while for the NRF there was only 1 photo 

sample location with 4 different sample heights (i.e., averages of 2 or 4 PBAs). In no case 

did we find a model with multiple independent PBAs that resulted in significant (p > .05) 

improvements in fits (results not shown).  For both NL and NRF data, the averages of PBAs 

at 1.6m and 4.6m produced the best fits to the biomass data (best model was PBA11).  

  



 

27 

 

Table 2. 5 Percent root mean square error (%rMSE) and nonlinear pseudo-R2 for biomass 

estimation models built using various PBAs for Newfoundland spacing trials (NL) and 

Noonan Research Forest (NRF). (all equations were significant (p Ò .05)) 

Model Photo Metric1 NL  NRF 

Numbers  %rMSE Pseudo-R2  %rMSE Pseudo-R2 

PBA01 PBA(S)1.6 20.27 0.64  20.24 0.20 

PBA02 PBA(S)2.6 20.96 0.61  20.11 0.21 

PBA03 PBA(S)3.6 22.95 0.53  20.38 0.19 

PBA04 PBA(S)4.6 21.69 0.58  20.01 0.21 

PBA05 PBA(A)1.6 17.36 0.73  - - 

PBA06 PBA(A)2.6 18.34 0.70  - - 

PBA07 PBA(A)3.6 19.75 0.66  - - 

PBA08 PBA(A)4.6 19.62 0.66  - - 

PBA09 PBA(*)1.6,2.6 17.59 0.73  19.95 0.22 

PBA10 PBA(*)1.6,3.6 17.88 0.72  20.07 0.21 

PBA11 PBA(*)1.6,4.6 17.17 0.74  19.83 0.23 

PBA12 PBA(*)1.6,2.6,3.6,4.6 17.83 0.72  19.84 0.23 

1 see Table 2. 3 for definitions of each photo metric 

Model Comparisons 

Figure 2. 2 shows the relationship between field biomass and the predicted biomasses from 

the best fitting TLS and PBA models for NL (TLS07 and PBA11) and NRF (TLS02 and 

PBA11). For both TLS and PBA models, NL predictions had a broader range and were 



 

28 

 

more closely related to field biomass than what was obtained for the NRF (Compare Figure 

2. 2-A, C to Figure 2. 2-B, D). Across the range of field biomass, NL predictions had lower 

bias and less scatter about the 1:1 line (Figure 2. 2-A, C), while for the NRF there was 

substantial overprediction in the lower range of field biomass and substantial 

underprediction in the upper range (Figure 2. 2-B, D). Comparing the two sets of 

predictions (Figure 2. 2-E, F), again, the NL predictions appeared to be more similar than 

the NRF predictions; however, this was more a function of the range of predictions rather 

than actual differences (Figure 2. 2-E, F).  In terms of statistical differences (K-S test) and 

statistical equivalences (TOST test), compared to the field biomass estimates, biomass 

predictions from the best models of TLS and PBA for both NL and NRF data were not 

significantly different and were statistically equivalent (based on a minimum detectable 

non-negligible difference of 10%) to the field measurements (Figure 2. 3). Similarly, the 

comparisons between the two predictions from the best models of TLS or PBA were not 

significantly different and were statistically equivalent for both NL and the NRF (Figure 

2. 3). 
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Figure 2. 2 Comparisons of best model predictions with field biomass and comparisons of 

best model predictions (PBA versus TLS metrics) for Newfoundland (NL) and Noonan 

Research Forest (NRF): A) Predictions from model TLS07 versus field biomass for NL; 

B) Predictions from model TLS02 versus field biomass for NRF; C) Predictions from 

model PBA11 versus field biomass for NL; D) Predictions from model PBA11 versus field 

biomass for NL; E) Predictions from model PBA11 versus TLS01 for NL; and F) 

Predictions from model PBA11 versus TLS02 for NRF. 
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Figure 2. 3 Kolmogorov-Smirnov test (KS test, dashed lines) and Equivalence test 

(TOST test, solid lines) between best model predictions (models TLS02, TLS 07 and 

PBA11) and field biomass and between predictions for A) Newfoundland (NL) and B) 

Noonan Research Forest (NRF). (The horizontal bars for the KS test represent the critical 

(Ŭ = .05) maximum difference and the horizontal bars for the TOST test represent the 

bounds of the zone of minimum detectable negligible differences of 10% of the mean 

value.)  

Influence of Structural Diversity on Model Performance 

Based on both the best TLS model and the best PBA model for the NL data, as management 

intensity increased (increasing spacing treatment), the %rMSE associated with each 

treatment (spacing) decreased (less error; Table 2. 6). Except for S00, %rMSEs for the best 
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PBA model were smaller than those for best TLS model across all spacing treatments 

(Table 2. 6). For both TLS and PBA models, biomass estimates for S00 were very poorly 

predicted and prediction error exceeded observed variation (Table 2. 6). For the NRF data, 

increasing species diversity did not result in any noticeable increase in bias for both the 

best TLS model and the best PBA model (Figure 2. 4-A, B) based on the lowess trend lines; 

however, both models showed a trend of increasing variability in residuals as species 

diversity increased. For the bivariate structural variance index (STVIdh) there was a slight 

trend of increasing negative bias with increasing structural diversity as well as increasing 

residual variation (Figure 2. 4-C, D).  

Table 2. 6 Partial rMSEs (%) and nonlinear pseudo-R2 under two biomass estimation 

models across five spacing treatments for Newfoundland (NL). 

Spacing/m TLS  PBA 
 %rMSE Pseudo-R2  %rMSE Pseudo-R2 

0.0 15.46 ---1  21.38 ---1 

1.2 23.02 0.32  19.67 0.51 

1.8 20.92 0.37  16.88 0.59 

2.4 18.83 0.24  11.22 0.73 

3.0 14.25 0.29  12.38 0.46 

Overall 19.82 0.67  17.17 0.74 
1 Model error exceeds variation  
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Figure 2. 4 Comparisons of residuals derived from TLS and PBA metrics with the 

bivariate structural variance index for Noonan Research Forest (NRF): A) Residuals from 

TLS02 model for NRF versus Shannonôs index; B) Residuals from PBA11 model for 

NRF versus Shannonôs index; C) Residuals from TLS02 model for NRF versus the index 

of structural diversity; and D) Residuals from PBA11 model for NRF versus the index of 

structural diversity.   
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Discussion  

Forests represent a key component in the terrestrial carbon cycle (Le Toan et al. 2011; Pan 

et al. 2011; Jucker et al. 2017) and, as such, accurate inventory estimates are required to 

monitor and manage forest carbon stocks (Brown 1999,  2002). Biomass is an important 

precursor to the estimation of carbon stocks (Brown 1999,  2002; Chen et al. 2019). 

Therefore, efficient methods to estimate biomass are required (Bartuska 2006; Chen et al. 

2019). One solution to this need is the development of biomass estimation models such as 

the ones developed in this project based on remote sensing.  

In this study we compared biomass models derived from terrestrial LiDAR scans and 

spherical images obtained with a consumer-grade 360° spherical camera. Our errors 

associated with models derived from LiDAR metrics were generally larger than errors 

associated with models derived from spherical-image-derived PBA (Tables 2. 4 and 2. 5). 

The differences were greater for the NL data than for the NRF data. Percent rMSE 

(%rMSE) ranged from about 20% - 33% for the NL data and from 20% - 23% for NRF 

(Table 2. 4). Our errors were comparable to what others have found using TLS. For 

example, Clark et al.(2011) presented biomass models derived from height-based metrics 

in complex tropical forests with rMSEs of 38.3 Mg/ha. Moskal and Zheng (2011) found 

that single location TLS scans only explained about 18% of the variation in total sample 

tree volume. Astrup et al. (2014) reported errors of approximately 10% , Vaglio Laurin et 

al.  (2014) reported errors of 39% with LiDAR height metrics, while Li et al. (2015) 

reported errors of 35% when estimating sagebrush biomass. Our best models developed 

from photo metrics explained over 50% of the variation in aboveground biomass in NL, 
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but only a little over 20% for the NRF (Table 2. 4). The use of a single photo-based sample 

location on the NRF may partially explain the lack of differences between TLS and PBA 

models as observed in the NL data with three photo sample locations. 

Several studies have recently examined the use of hemispherical panoramas and spherical 

photography to extract stand and individual tree attributes (Stewart 2004; Dick et al. 2010; 

Berveglieri et al. 2017; Mulverhill et al. 2019; Wang et al. 2020). Stewart et al (2004), Dick 

et al. (2010), and Fastie (2010) all attempted to estimate basal area from single photos 

and/or panoramas stitched from multiple photographs based on the photo angle count 

concept originally proposed by DeCourt (1956). All of these studies identified tree 

occlusion as a major problem associated with photo-based angle count sampling. Wang et 

al. (2020) demonstrated that the photo angle count concept could be extended to spherical 

images and demonstrated that multiple photo sample points minimized the issue of 

occluded trees. Our results for estimating biomass support this conclusion as well. Using 

three sample points per plot reduced the %rMSE from about 20% to 17% for the NL 

spacing trail data (Table 2. 5). Using averages across multiple sample heights from multiple 

sample locations provided the best estimates but only marginally improved model 

performance (%rMSE was reduced from 17.36 to 17.17; Table 2. 5).  

Stand structure significantly influenced model performance (Table 6, Figure 2. 4) and 

complex stand structure increased the difficulty in estimation of forest biomass (Table 6, 

Figure 2. 4). While increased species diversity did impact prediction bias, it did result in 

increasing variation in predictions errors (Figure 2. 4). Li et al. (2015) found that study-

area size and point cloud density impacted model performance because differences in 
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sample sizes and spatial distributions can augment errors from allometric equations (Levia 

2008). Zhao et al. (2012) also found that selection of allometric equations impacted the 

resulting LiDAR-based forest biomass estimates, especially in plots with high biomass. 

Substantial biases, in the form of underpredictions, are often present in the predictions for 

higher-density, higher-biomass stands (Li et al. 2019; Chen et al. 2020). Increasing stand 

complexity resulted in increased variance in residuals in this study (Figure 2. 4). 

It is interesting to note that the best PBA models were the averages of PBA estimates at 

two different heights (Table 2. 4). Like biomass estimation is a precursor to carbon 

estimation (Brown 1999,  2002; Chen et al. 2019), volume can be considered a precursor 

to biomass estimation (Kershaw et al. 2016; Chen et al. 2019): Biomass = (Specific 

Gravity)(Volume). At the stem-level, volume of a stem section can be estimated using 

Smalianôs formula (Kershaw et al. 2016 p. 141): Volume = 0.5(Area of Base + Area of 

Top)(Length). The areas are the cross-sectional areas estimated from the diameters at each 

end point. Cross-sectional area is a stemôs equivalent to stand basal area. Our averages of 

PBA estimates at two different heights is really a stand-level expression of Smalianôs 

formula. Coupling this estimate with some measure of stand height would most likely 

improve the models developed here. This is likely another contributing factor to the lack 

of improved model performance with the NRF versus NL data. The 4.6m sampling height 

is about 1/3rd the average plot height in NL, but only about 1/5th the average plot height on 

the NRF. The average PBA between 1.6m and 4.6m possibly better captures the basal area 

ñtaperò for the NL sites than it does for the NRF plots, thus producing models with 

substantially improved %rMSEs and pseudo-R2s. The limits of our field equipment made 
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it impossible to obtain photos from higher points. A height pole with greater extension or 

mounting the spherical camera on a drone could easily solve this problem.  

LiDAR scanning has gained recognition (White et al. 2013) as a standard tool in forest 

resource inventories (Reutebuch et al. 2005; Dassot et al. 2011). Wall-to-wall estimation 

of biomass is a common product from many airborne LiDAR-assisted forest inventory 

studies (Lefsky et al. 2002; Pflugmacher et al. 2008; Hawbaker et al. 2009; Meyer et al. 

2013; Hayashi et al. 2015). The high spatial resolution of wall-to-wall LiDAR-assisted 

inventory maps makes LiDAR a seductive tool conveying a sense of accuracy that is not 

supported by the underlying models or field calibration data (Yang et al. 2019; Chen et al. 

2020). Local calibration of LiDAR predictions may be required to make LiDAR-assisted 

predictions useful for local management decisions (Hsu 2019). The models developed here 

could be a useful approach to extend these plot-level estimates to wall-to-wall estimates 

using a hierarchical variable probability sampling design (Hsu 2019; Chen et al. 2020). 

Conclusions 

When we compare our TLS results to our PBA results, we find very little differences in 

model predictions (Figs. 2 and 3). PBA models generally account for a higher percentage 

of variation and produce lower %rMSEs than the TLS models. Given the field time 

differences and the cost differences, the spherical photos seem to be an effective way to 

estimate area-based above ground biomass relative to TLS. The Ricoh Theta S (Ricoh 

Imaging Company, LTD 2016) used in this study costs around $400 Canadian while the 

FARO Scanner costs over $100,000 Canadian. To obtain three mid-resolution scans per 

plot took upwards of one hour, while the 12 spherical photographs can be obtained in under 
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10 minutes. Multiple TLS scans must be postprocessed, including coregistering multiple 

scans, determining ground layers, and extraction of TLS metrics. This process can require 

up to 30 minutes of office processing time. The spherical photos also require post 

processing of images to obtain PBA estimates. Using the Pano2BA software (Wang et al. 

(2020)) requires about 2 minutes per photo. In this study we used up to 6 photos per plot 

for a total office time of approximately 12 minutes. Overall, we believe the spherical photo 

approach for estimating above ground biomass is more effective and efficient than TLS.  
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Chapter 3 Sector Subsampling for Basal Area Ratio Estimation: An 

Alternative to Big BAF Sampling 

Abstract 

Big Basal Area Factor (big BAF) sampling is a widely used subsampling method to select 

measureïtrees. Several studies have shown big BAF sampling to be an efficient sampling 

scheme. In this study we use sector sampling (Smith et al. 2008, For. Sci. 54, 67ï76) as an 

alternative subsample selection method. Based on some simulated mapped stands derived 

from three balsam fir (Abies balsamae) spacing trials in western Newfoundland, we show 

that sector subsampling is comparable to big BAF sampling in terms of estimated mean 

basal area ratios and their associated standard errors. Differences between big BAF 

sampling and sector sampling methods showed less than 1% difference across the three 

sites. As with big BAF sampling, changes in sample intensity had no significant (p < 0.05) 

effects on the accuracy of estimating mean biomass to basal area ratios and the resulting 

estimated mean biomasses per unit area.  

Key Words: sector sampling, subsampling, basal area ratio estimation, sample 

efficiency, big BAF sampling, biomass estimation    

Introduction  

Many forest-level attributes, such as volume, biomass, and carbon, rely on individual tree 

measurements and allometric models (Kershaw et al. 2016). Direct measurement of these 

attributes is often impractical, expensive, destructive, and, therefore limited to research 

efforts to develop allometric relationships (Ketterings et al. 2001; Jenkins et al. 2003). For 
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volume and biomass estimation, allometric models that include both diameter at breast 

height (DBH) and total height (HT) are often more accurate and applicable to a wider range 

of stand conditions and ages than models that only use DBH (Honer 1967; Lambert et al. 

2005; Ung et al. 2008; Kershaw et al. 2016). However, measurement of height is costly 

relative to counting sample trees and measuring DBHs (Iles 2003; Lynch 2017; Yang et al. 

2017).  

Subsampling of plot trees has long been used in forest inventory (Iles 2003; Marshall et al. 

2004). Unfortunately, many selection methods were ad hoc or haphazard at best (Iles 2003) 

with the potential of introducing selection bias at the subsampling stage. An easily 

implemented solution to this is big Basal Area Factor sampling (BAF). Big BAF sampling 

is a form of horizontal point sampling (HPS) that utilizes two angle gauges: a small one to 

count ñinò trees; and a larger one to select trees to measure (Iles 2003; Marshall et al. 2004; 

Yang et al. 2017). The ñmeasureïtreesò are used to estimate the ratio of the tree attribute 

of interest (volume, biomass, carbon content, and so on) to tree basal area (ὢὄὃὙ

ὢ ὄὃϳ ; where XBAR is the tree attribute to tree basal area ratio of the ith tree, Xi
 is the 

attribute of interest for the ith tree and BAi is the basal area (cross-sectional area) of the ith 

tree). The estimated mean XBAR across all measureïtrees is multiplied by the estimated 

mean basal area per unit area determined from the count trees to obtain the estimated mean 

per unit area estimate of the attribute(s) of interest.  

Because plot to plot variability in tree counts is often much greater than variability in 

XBAR between measureïtrees, sampling effort is concentrated on sampling more count 

plots (Iles 2003; Marshall et al. 2004). Yang et al. (2019) developed methods for optimizing 

small and large BAF choice for volume estimation and Chen et al. (2019) generalized those 
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results for volume, biomass, and carbon content. Chen et al. (2020) further applied big 

BAF sampling on a forest-level scale to correct LiDAR-derived enhanced forest inventory 

estimates to develop base-line carbon estimates for a carbon offset project. The ability to 

estimate biomass, and subsequently carbon, in a statistical accurate, and cost-effective 

manner, is important for developing improved forest management projects for monetized 

carbon offset projects (Chen et al. 2019,  2020). 

While  big BAF sampling is very efficient (in terms of its cost-variance tradeoff) and 

logistically easy to implement in the field, it is just one of many potential subsampling 

schemes that could be applied to the problem of efficiently selecting trees to measure (Iles 

2003 pp. 562-567). Selection based on probability proportional to prediction and 

systematic list sampling are other potential methods commonly used (Iles 2003). Sector 

sampling (Iles and Smith 2006; Smith and Iles 2012) is another potential subsampling 

scheme based on randomly selected sectors radiating from plot centers. Originally 

developed to sample small or irregular-shaped forest areas (Iles and Smith 2006), sector 

sampling, though not widely applied, has the potential to be a very efficient sampling 

scheme in certain situations. The sector orientation is randomly selected and all trees within 

the sector radiating from plot center to the boundary of the area of interest are measured 

(Iles and Smith 2006; Smith and Iles 2012). The angle of the sector is usually 

predetermined and all trees within a sector will be sampled with equal probability.  

Sector sampling is commonly applied to small/fixedïareas regardless of boundary shapes 

or vegetation types (Iles and Smith 2006; Smith and Iles 2012). This approach is an 

unbiased sampling design when appropriate randomization procedures and estimating 

procedures are used, because all trees within each sector are sampled from vertex point to 
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the edge of the angle border (Lynch 2006) and can be scaled to forest-level parameters. If 

sector azimuths are chosen at random, tract totals and mean tree attributes can be estimated 

using a simple expansion factor approach (Iles and Smith 2006). Per unit area estimates 

require a ratio of means approach to account for different sector sizes (Smith et al. 2008; 

Smith and Iles 2012). The simplicity of implementing sector sampling in small areas makes 

it a potentially ideal alternative to big BAF sampling in some sampling situations. To our 

knowledge, no one has explored the potential of sector sampling as an alternative 

subsampling scheme similar to big BAF sampling.  

The specific objectives of this study were: 1) Estimate the efficiency of sector sample 

selection in comparison with big BAF selection for estimating aboveground biomass; and 

2) Determine the effects of sample intensity across the three different subsampling 

selection methods used in this study.  

Materials and Methods 

Study sites  

Data from three early spacing trials located on western Newfoundland Island (NL), Canada 

were used in this study (Figure 3. 1). The spacing trials were established in the early 1980s 

by the government of Newfoundland in cooperation with the Canadian Forest Service 

(Donnelly et al. 1986). The sites were dominated by balsam fir (Abies balsamea L.) with 

minor components of black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.) and 

white birch (Betula papyrifera Marshall). There were five spacing treatments: Control, or 

no spacing, (S00), 1.2m spacing (S12), 1.8m spacing (S18), 2.4m spacing (S24) and 3.0m 

spacing (S30). The treatments were arranged in a randomized complete block design with 
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3 replicates per site (3×3×5 = 45 permanent sample plots were used in this study). Each 

treatment was applied to a 0.25 ha block (50m x 50m), and a circular permanent sample 

plot (PSP) was established near the center of each block. The PSP size varied such that 

there were approximately 100 trees per plot at the time of establishment. 

Simulation of subsampling protocols 

Each NL plot was expanded to a 1 ha ñmappedò plot using simulation of spatial locations 

and random sampling of individual trees from each PSPôs tree list (Figure 3. 2A). For 

Control plots (S00), locations were randomly assigned by generating random {x,y} 

coordinates. For thinned plots, the 1 ha area was divided into cells based on average 

spacing. For example, when applied to the 2.4m spacing in simulations, the 1ha area was 

divided into 2.4m x 2.4m cells. Within each cell, a tree was randomly located by generating 

a random {x,y} coordinate within the bounds of the cell and a tree was randomly drawn 

from the tree list for that PSP with replacement.  

A 2-M count BAF (i.e., each treed tallied = 2m2ha-1 basal area) was simulated to select 

count (ñINò) trees for basal area estimation (Figure 3. 2B). Three different subsample 

selection methods were used to select trees for height measurement (Figure 3.  2B). The 

first used a big BAF approach. Measureïtrees were selected using a large BAF. We tested 

five different big BAFs: 20; 30; 40; 50; and 60 M. The second method used sector sampling 

to subsample count trees (SectorIN). Five different sector intensities, expressed as a 

percentage of the full compass (360ę) were used is this study: 10%, 7%, 5%, 4%, and 3%.  

The midpoint azimuth of the sector was randomly oriented and all count (ñINò) trees within 

the sector were selected for measurement (DBH and height (HT)).  The third method used 
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sectors to select trees, but independent of whether they were count trees or not. All trees 

within the sector and within a specified distance from plot center (11.28m was used in these 

simulations) were selected for measurement (DBH and HT). Again, we used five different 

sector intensities: 1.2%, 1.0%, 0.7%, 0.5%, and 0.4%. The big BAF and two different sets 

of sector intensities were selected to give approximately the same number of measureïtrees 

across the samples (Table 3. 1). Three points were randomly selected within each 1 ha 

simulated plot. At each sample point, the count trees and measureïtrees were determined. 

The simulations were repeated 100 times. The walk-through method (Ducey et al. 2004) 

was used to account for any boundary overlap. 
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Figure 3. 1 Simulation of (A) 1 ha spacing plots, and (B) count tree selection and the 

three measure-tree subsample selection methods.  

Biomass Estimation  

Individual tree biomass was estimated for each tree in the simulated plots using the 

Canadian National Biomass models (Lambert et al. 2005). We used Eq. 3 from Table 3. 4 

in Lambert et al. (2005) which utilized both DBH and HT. Total tree biomass (BMi) was 

estimated by summing the separate component biomass estimates (wood, bark, branches, 

and foliage). For the simulated 1ha plots, ñtrueò field biomass per ha (FBM; tonnesĀha-1) 
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was obtained by summing the biomass estimates across all trees and dividing by 1000 

kgĀtonne-1: 

(1)   Ὂὄὓ 
В

          

The estimated mean biomass to basal area ratio (ὄὄὃὙ; kgĀm-2) was estimated from the 

measureïtrees and used to estimate mean BM for the simulated subsampling methods 

(Ὓὄὓ) using estimated ὄὃ: 

(2) Ὓὄὓ
Ͻ

           

where, 

(3) ὄὃ
В В

        

and p = number of count plots; BAj = the BA per ha on the jth plot; and Counj = the number 

of ñinò trees on the jth plot. The estimation of ὄὄὃὙ depended on which subsampling 

method was employed. Big BAF selection and SectorIN selection were both variable 

probability methods and the mean ratio approach (Kershaw et al. 2016) was used: 

(4a) ὄὄὃὙ
В В

        

For the SectorDST method, measureïtrees were selected with equal probability, therefore, 

we used a ratio of means approach (Kershaw et al. 2016): 

(4b) ὄὄὃὙ
В

В

В

В Ȣ
       

Percent standard error for Ὓὄὓ was estimated from two independent variables based on 

Bruceôs formula (Iles 2003; Marshall et al. 2004; Yang et al. 2017; Chen et al. 2020; Hsu 

et al. 2020): 
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(5) ϷίὩὛὄὓ ϷίὩὄὃ ϷίὩὄὄὃὙ                                       

where %se() is the estimated standard error as a percent of the estimated mean. Gove et al. 

(2020) showed the relationship between Bruceôs formula and the Delta method. While 

Bruceôs formula does involve an assumption of independence between BA and BBAR, 

Gove et al. (2020) found in simulations that the impact of non-independence was 

negligible.  For ϷίὩὄὃ, and ϷίὩὄὄὃὙ for bigBAF and sectorIN selection, we used 

the estimator derived from simple random sampling to estimate standard error (se): 

 (6a) ίὩὼӶ
Ѝ

В В ϳ
         

where x is either BA for the sample point or BBAR for the individual measureïtree, s is 

the estimated standard deviation, and n is sample size (number of sample points or number 

of measureïtrees). For sectorDST selection we used (Kershaw et al. 2016): 

(6b) ίὩὄὄὃὙ
В В В Ͻ

Ͻ
                

where, Ὓὄὓ and Ὓὄὓ are the biomass estimates for individual sample plots and the 

estimated mean biomass estimate for the measureïtrees; ὄὃ and  ὄὃ  are the basal areas 

(cross-section areas) and estimated mean basal area (cross-section area of the measureï

trees; and ὄὄὃὙ is the estimated mean biomass to basal area ratio from eq. 4b. 

The three different measureïtree selection methods were compared on the basis of ὄὄὃὙ, 

%se(ὄὄὃὙ), mean biomass estimates and their distributions, equivalence tests and rank 

correlations by study site and sample intensity. All simulations and analyses were 

conduction in the R Statistical Language (R Development Core Team 2019). 
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Results 

Estimated BBARs 

Estimated ὄὄὃὙs (kgĀm-2) from the 100 sample simulations using the simulated 1 ha plots 

did not vary substantially by study site, measureïtree selection method, or sample intensity 

(Table 3. 2, Figure 3. 3). Overall estimated ὄὄὃὙ (mean of the 100 simulated sample 

means) ranged from about 3000 kgĀm-2 on Roddickton to 3200 kgĀm-2 on Cormack and 

Pasadena (Table 3. 2). Cormack had greater variability in estimated ὄὄὃὙ than the other 

two sites (Figures 3. 3 & 3. 4). Comparisons within study sites but across both measureï

tree subsample selection method and measureïtree sample intensity were much closer, with 

differences consistently well below 1% of the estimated ὄὄὃὙs (Table 3. 2).  

While overall estimated ὄὄὃὙ did not change across the range of sample intensities, the 

range of estimated ὄὄὃὙs (Figure 3. 3) and their associated standard errors (Figure 3. 4) 

of estimated ὄὄὃὙs increased with decreasing sample intensity (Table 3. 2).  There were 

slight biases observed between the overall estimated ὄὄὃὙs and the ñtrueò population 

ὄὄὃὙs (Figure 3. 3) as calculated using all trees across the 1 ha simulated plots on each 

study site. Here, bias is assessed relative to the mean computed from a large number of 

repeated simulations, which stands in for the unknown population mean. The bias for 

Roddickton was about twice that observed on the other two sites (å6% on Roddickton and 

å3% on Cormack and Pasadena); however, this was the result of a single tree measurement 

with a potential error in measured height (almost double all other trees). When this tree 

was eliminated from both the population estimate and the measureïtree estimates, the bias 

was reduced to just under 3%, as observed on the other two sites.   
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Table 3. 1 Mean number of measure trees, standard errors (in parentheses) and range {in 

brackets} sample selection methods for the 3 sites (Cormack, Pasadena, Roddickton) by 

study site, and sample intensity. (Factor levels represent metric BAFs for big BAF 

sampling and sector width as a percent of a circle for sector sampling) 

Study Sample Sample Selection Method 

Site Intensity big BAF  SectorIN  SectorDST 

  Level Size  Level Size  Level Size 
Cormack 1 20 100 (7.9)  10 101 (8.2)  1.2 107 (9.6) 

   {79, 119}   {76, 122}   {87, 137} 

 2 30 67 (7.1)  7 71 (7.5)  1.0 90 (9.3) 

   {46, 82}   {56, 91}   {71, 117} 

 3 40 50 (5.8)  5 50 (6.0)  0.7 61 (7.3) 

   {38, 63}   {36, 66}   {41, 79} 

 4 50 40 (5.9)  4 41 (6.0)  0.5 45 (6.8) 

   {26, 53}   {27, 57}   {29, 61} 

 5 60 34 (4.7)  3 30 (4.6)  0.4 36 (6.1) 

   {22, 43}   {21, 41}   {25, 53} 

Pasadena 1 20 154 (8.4)  10 152 (9.8)  1.2 87 (7.7) 

   {137, 

177} 

  {130, 184}   {68, 108} 

 2 30 102 (7.5)  7 107 (8.5)  1.0 72 (7.8) 

   {83, 118}   {82, 127}   {55, 95} 

 3 40 77 (6.7)  5 77 (6.8)  0.7 50 (6.7) 

   {63, 92}   {62, 94}   {32, 65} 

 4 50 62 (6.6)  4 61 (6.8)  0.5 35 (6.19) 

   {50, 78}   {45, 77}   {22, 52} 

 5 60 51 (5.0)  3 46 (5.8)  0.4 29 (4.9) 

   {39, 67}   {33, 59}   {20, 41} 

Roddickton 1 20 116 (8.9)  10 114 (9.2)  1.2 115 (9.9) 

   {88, 134}   {93, 145}   {94, 134} 

 2 30 77 (7.8)  7 80 (7.9)  1.0 95 (9.4) 

   {59, 96}   {61, 99}   {74, 123} 

 3 40 58 (6.2)  5 57 (6.4)  0.7 68 (6.8) 

   {44, 79}   {35, 73}   {50, 84} 

 4 50 46 (5.7)  4 46 (5.5)  0.5 46 (6.5) 

   {32, 59}   {34, 61}   {30, 63} 

 5 60 39 (5.6)  3 34 (5.7)  0.4 38 (6.3) 

   {25, 52}   {21, 53}   {26, 56} 
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Biomass estimates 

Overall estimated mean biomass (tonnesĀha-1) varied by site, reflecting inherent differences 

in site productivity across the three sites (Table 3. 2, Figure 3. S1) with Pasadena > 

Roddickton > Cormack.  While overall mean biomass varied across the three sites, 

estimated mean biomasses, like estimated mean BBARs, did not vary substantially by 

measureïtree selection method nor sample intensity (Table 3. 2). Similar to estimated 

BBAR, the range of estimates and the associated standard errors for biomass increased with 

decreasing sample intensity (Table 2, Figures 3. S1 & 3. S2). However, while measureï

tree sample sizes typically decreased by 70% (Table 3. 1), standard errors only increased 

by 15% or less (Table 3. 2).  

For the 100 sample simulations conducted on each site, the nominal 95% confidence 

intervals included the ñtrueò population means for all replicate samples across all sites Ĭ 

measureïtree selection methods × measureïtree sample intensities (Supplementary Figures 

3. S3 ï 3. S5). The ñtrueò population mean was calculated as the sum of the individual trees 

on each simulated 1-ha plot and averaged across the 15 plots within each spacing trial. At 

the largest measureïtree sample intensities, the correspondences between estimated mean 

biomass among the three measureïtree subsample selection methods were quite good 

(Supplementary Figures 3. S6 ï 3. S8; Table 3. 3).  As sample intensity decreased, the 

relationships became increasingly noisy (Supplementary Figures 3. S6 ï 3. S8), especially 

for Cormack (Supplementary Figure 3. S6).  Spearmanôs rank correlation decreased with 

decreasing sample intensity, while the minimum detectable negligible differences 

increased (Table 3. 3). Even though MDNDs increased with decreasing sample intensity, 

when expressed as a percentage of standard deviation (Table 3. 3), most were less than 
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25%, which is generally considered sufficient to conclude the two samples are statistically 

equivalent (Robinson and Froese 2004). 

Discussion 

Big BAF sampling is a well-established and increasingly used method for selecting a 

subsample of measureïtrees in a variety of forest inventory applications (Corrin 1998; 

Desmarais 2002; Iles 2003; Marshall et al. 2004; Yang et al. 2017; Chen et al. 2019).  

Because variability in counts of ñinò trees between sample points is generally greater than 

the variability in the volume to basal ratio (Marshall et al. 2004; Yang et al. 2017), or 

biomass to basal area ratio (Chen et al. 2019), big BAF sampling places inventory effort 

on establishing more count plots than measuring sample trees (Iles 2003; Marshall et al. 

2004). The alternative selection methods proposed in this study using sector sampling were 

comparable to big BAF measureïtree selection in terms of both average BBAR (Table 3. 

2, Figure 3. 3) and percent standard error of mean BBAR (Figure 3. 4). Differences in mean 

BBARs across the three measureïtree selection methods averaged less than 0.2% across 

the three spacing trials and five sample intensities (Table 3. 3). Because estimated biomass 

per ha is simply BBAR multiplied by average BA (which was constant for all three sample 

selection methods and measureïtree sample intensities), biomass per ha did not vary 

substantially among the measureïtree selection methods as well (Tables 3. 2 & 3. 3). 
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Table 3. 2 Mean, standard error (in parentheses) and range (in brackets) for estimated 

BBARs (kgĀm-2) and biomass (tonnesĀha-1) by study site, measure-tree selection method 

and sample intensity for the western Newfoundland (NL) spacing trials. (measure-tree 

sample intensities are defined in Table 3. 1) 

Selection 

method 

Sample 

intensity  

big BAF   SectorIN   SectorDST 

BBAR Biomass  BBAR Biomass  BBAR Biomass 

Cormack 1 3162 (43.0) 140.8 (4.0)  3157 (45.2) 140.6 (4.4)  3164 (55.0) 140.9 (4.4) 

  {3066, 3268} {131.9, 150.9}  {3004, 3305} {129.9, 152.7}  {2957, 3328} {129.3, 150.9} 

 2 3151 (56.0) 140.3 (4.4)  3162 (48.3) 140.7 (3.6)  3156 (66.4) 140.5 (4.5) 

  {3010, 3286} {128.3, 150.0}  {3008, 3262} {131.8, 149.5}  {2962, 3322} {128.5, 151.4} 

 3 3153 (58.1) 140.4 (4.3)  3155 (65.9) 140.5 (4.6)  3147 (81.6) 140.1 (5.1) 

  {2975, 3285} {127.3, 151.8}  {2998, 3324} {130.3, 151.2}  {2917, 3304} {125.2, 153.0} 

 4 3155 (68.9) 140.8 (4.5)  3147 (69.6) 140.5 (4.5)  3146 (83.3) 140.4 (5.3) 

  {2934, 3282} {128.1, 154.3}  {2956, 3285} {127.4, 151.8}  {2904, 3381} {128.9, 162.1} 

 5 3154 (71.2) 140.4 (4.3)  3151 (89.7) 140.3 (5.3)  3143 (103.7) 139.9 (5.0) 

  {2983, 3310} {128.2, 152.2}  {2899, 3405} {128.2, 155.5}  {2773, 3353} {127.4, 153.4} 

Pasadena 1 3205 (17.5) 218.7 (3.8)  3205 (20.0) 218.7 (3.9)  3201 (28.7) 218.5 (4.2) 

  {3164, 3256} {209.3, 226.9}  {3149, 3261} {208.4, 225.9}  {3127, 3268} {207.5, 227.3} 

 2 3204 (25.5) 218.3 (3.8)  3204 (24.5) 218.4 (4.1)  3199 (32.0) 218.0 (4.44) 

  {3148, 3272} {209.0, 226.7}  {3138, 3252} {208.3, 227.3}  {3120, 3314} {207.6, 230.3} 

 3 3205 (28.1) 219.0 (3.9)  3205 (27.9) 219.1 (3.7)  3198 (43.1) 218.5 (4.6) 

  {3132, 3258} {208.6, 229.9}  {3117, 3272} {208.8, 227.3}  {3098, 3307} {207.1, 231.6} 

 4 3207 (28.7) 218.8 (3.4)  3209 (32.2) 218.9 (3.8)  3195 (49.7) 217.9 (4.4) 

  {3141, 3270} {210.3, 227.1}  {3136, 3282} {208.0, 230.2}  {3083, 3365} {208.2, 232.8} 

 5 3208 (35.3) 218.5 (3.9)  3209 (33.1) 218.5 (3.7)  3207 (55.6) 218.4 (5.0) 

  {3123, 3297} {210.2, 230.4}  {3118, 3286} {209.7, 231.2}  {3052, 3339} {205.5, 228.7} 

Roddickton 1 2924 (26.3) 150.2 (3.7)  2926 (24.7) 150.3 (3.5)  2924 (37.9) 150.1 (3.9) 

  {2860, 3003} {141.4, 160.0}  {2876, 3015} {140.7, 159.9}  {2835, 3021} {141.7, 160.3} 

 2 2930 (32.5) 150.7 (3.5)  2928 (35.8) 150.6 (3.5)  2933 (45.6) 150.9 (3.8) 

  {2848, 3000} {142.9, 159.5}  {2852, 3022} {142.4, 159.7}  {2834, 3059} {143.5, 160.7} 

 3 2928 (41.9) 150.0 (3.6)  2921 (42.1) 149.6 (3.7)  2917 (52.0) 149.4 (4.1) 

  {2816, 3043} {139.5, 159.4}  {2785, 3037} {138.4, 157.4}  {2747, 3069} {138.7, 160.1} 

 4 2927 (42.3) 150.1 (3.7)  2926 (51.7) 150.0 (3.9)  2929 (68.3) 150.2 (4.9) 

  {2802, 3013} {141.9, 162.5}  {2767, 3027} {139.3, 157.5}  {2773, 3078} {137.8, 164.4} 

 5 2918 (50.2) 149.8 (4.0)  2923 (60.0) 150.1 (4.4)  2919 (67.8) 149.9 (4.8) 

    {2784, 3033} {140.8, 159.5}   {2784, 3084} {141.1, 160.9}   {2709, 3059} {137.0, 160.4} 
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Figure 3. 2 Distribution of BBARs by study site, measure-tree subsample selection method 

and measure-tree subsample intensity for the Newfoundland (NL) spacing trials. 

Horizontal black bars are the overall mean BBARs generated from each simulation method 

under different measure intensities. Dashed black line is the ñtrueò population BBAR. (For 

Measure BAF, intensity is expressed in terms of metric basal area factors, m2ha-1 per tree 

tallied, for Sectors intensity is expressed in term of percent of full circle) 
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Figure 3. 3 Distribution of BBAR errors by study site, measure-tree subsample selection 

method and measure-tree subsample intensity for the Newfoundland (NL) spacing trials. 

Dark grey bars stand for the mean errors generated from each method under different 

measure intensities. (For Measure BAF, intensity is expressed in terms of metric basal area 

factors, m2ha-1 per tree tallied, for Sectors intensity is expressed in term of percent of full 

circle) 




























































































































