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Abstract

With the rising popularity of Android mobile devices, the amount of mali-

cious applications targeting the Android platform has been increasing tremen-

dously. To mitigate the risk of malicious apps, there is a need for an auto-

mated system to detect these applications. Current detection techniques rely

on the signatures of existing malware samples and hence may not be able to

detect new malware samples. Instead of generating signatures for malware

samples itself, in this thesis, we propose the development of a lightweight

system that can generate signatures of malware writers by leveraging the

strings components present in their Android binaries. Using these author

signatures, we can effectively detect a wide range of existing as well as any

new malware samples generated by particular authors. We evaluated the

proposed system over datasets of 1559 benign, 262 malicious and 96 obfus-

cated Android applications. The proposed system was able to identify the

authors of benign, malicious, and obfuscated Android applications with an

accuracy of 98%, 96%, and 71% respectively.
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Chapter 1

Introduction

Mobile devices have made a great contribution in the field of information

sharing. The mobile device market is expanding rapidly every year. In 2016,

the total number of worldwide mobile phone users was about 4.6 billion,

which is forecast to reach 5 billion by 2019 [21]. Smartphones with various

operating systems are available in the market. However, Android mobile de-

vices have dominated the mobile device market. In 2016, nearly 88% of the

mobile device market was occupied by Android [59]. The Android market

expanded rapidly with nearly 10% growth rate in total market share within

the last three years 2013-2016 [31]. Figure 1.1 shows the worldwide smart-

phone OS market share from 2013 to 2016.

Mobile application markets are one of the main platforms for distribution

of legitimate, as well as malware applications. Malware is an abbreviation

used for malicious software. The Android operating system is an open source
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Figure 1.1: Worldwide smartphone OS market share [31]

mobile platform. In addition, Google Play Store, the official Android appli-

cation distribution store, has very few restrictions on registering and dis-

tributing the applications. Due to this, the number of applications uploaded

and distributed through Google Play Store has increased dramatically since

2011 [5]. Figure 1.2 shows the increase in the number of available applica-

tions on Google Play Store from 2009 to 2017.

The openness of the Android platform and lack of security checks in the appli-

cation distribution process have resulted in an increasing number of malicious

applications targeting the Android platform. According to AV-TEST 2015-

16 report, an estimated 99% of all existing mobile malware samples target

Android devices [32]. Figure 1.3 shows the drastic increase in the number
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Figure 1.2: Number of applications on Google Play Store [5]

of malware samples targeting the Android platform from January 2013 to

September 2016.

With the increasing number of malicious applications, Android users are

becoming more susceptible to malware, and hence there is a need for an au-

tomated system to detect such malicious apps. On the industry side, the

state-of-the-art malware detection systems employ signatures. A malware

signature or a malware fingerprint is used to detect and uniquely identify a

particular malware. These signatures can be used to design a detection sys-

tem that examines an unknown sample and if an unknown sample matches

the fingerprint of an existing malware, it is flagged as malicious. However,
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Figure 1.3: Android Malware Development [32]

systems employing signatures are unable to spot zero-day attacks. A zero-

day attack exploits the unknown, undisclosed vulnerability of the software.

The signature of malware samples exploiting such unknown vulnerabilities

are not available. According to G DATA Security, malware writers are pro-

ducing 8400 new Android malware applications per day in 2017 [42]. Thus,

it is extremely important to design a system which can effectively detect new

malware samples as well. Also, a wide range of proposed malware detection

techniques are based on either the analysis of complex features extracted from

the files present in Android executables (e.g., DroidSafe [28]) or dynamic fea-

tures derived from an app's behaviour during runtime (e.g., RiskRanker [29]).

Extraction of such complex features is a tedious task and requires a consider-
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able amount of time and system resources. With the increasing amount and

complexity of malware, it is beneficial to employ methods that do not rely on

analysis of complex features and are time efficient. The task of identifying

malicious apps is becoming more challenging as obfuscation in the mobile

domain is gaining popularity in both legitimate and malware applications.

Obfuscation is a transformation process that produces functionally identi-

cal code that is difficult to analyse understand or reverse engineer. Android

developers can employ various obfuscation tools to generate obfuscated An-

droid binaries.

In this work, we offer an alternative solution. Instead of detecting mal-

ware based on signatures of malware samples, we propose the development

of a lightweight system to generate the signatures of malware writers which

in turn will be useful to detect all malware samples generated by particu-

lar malware authors. Our hypothesis is that every developer has a unique

programming style which is reflected through the various components of pro-

grams developed by them. By analysing such program components, we can

possibly generate the author's signature (also termed fingerprint or profile)

that can uniquely identify applications developed by that author. One of the

simplest components that can represent an author's writing style is strings.

Various string components such as variables, class names, method names,

string literals reflect the writing preferences of the developer. We present an

approach to generate Android author profiles by analysing different string

components present in their sample applications. Every unknown Android
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application is then compared with existing author profiles. If the sample

corresponds to a malware author profile, it can be labelled malicious. This

task of identifying the author of an unknown application is widely known as

authorship attribution. By this method, we can cover a number of malware

samples generated by malware authors. We examine four different kinds of

strings namely unreferenced, DEX, application and all strings for generating

author profiles. Unreferenced and DEX strings are present in the DEX file

of the Android binary. Application specific strings are extracted from the

strings.xml file, whereas, all strings combine all of these strings together.

We further propose to generate Android author profiles even in the presence

of obfuscation. With the help of this system we will be able to detect a wide

range of malware applications developed by malware authors effectively. We

present an efficient, lightweight, obfuscation resilient Android authorship at-

tribution system for generating profiles of Android authors by leveraging the

text strings present in an Android application binary. These generated pro-

files in turn will be useful to identify the author/developer of an unknown

Android application.

We have pursued the following research questions in this thesis.

• Can we detect the author of an Android application (benign or mali-

cious) by analysing the programming style of the author in terms of

the strings that they use?

• Out of the different kinds of strings considered for our analysis, which

6



one is the most effective for the Android authorship attribution task?

• Does our approach perform well even in the presence of obfuscated

Android applications?

To answer the above research questions, we have developed an Android at-

tribution system based on the analysis of different kinds of strings such as

unreferenced, DEX, application and all strings represented in the form of n-

grams. We have employed a linear SVM classifier for the Android authorship

attribution task. We have tested the approach over three different datasets,

i.e., datasets of benign, malicious and obfuscated applications.

The contributions of this thesis are as follows:

• To the best of our knowledge, this is the first effort to design an An-

droid authorship attribution system by leveraging different string com-

ponents of apps.

• We have demonstrated the effectiveness of the proposed method to

identify authors of benign, malicious as well as obfuscated Android

applications.

• We have presented a comparative analysis of the performance of the

different kinds of strings for the authorship attribution task.

• We have conducted our experiments over three different datasets. We

have collected a total of 1559 benign application samples from eight

different Android markets, 262 malicious application samples from the

7



koodous system, and 96 obfuscated Android applications from the

GitHub repository. These datasets can facilitate further research in

this area as designing the dataset is itself a big challenge for any attri-

bution study.

8



Chapter 2

Related work

In recent years, the amount of research interest in the field of mobile se-

curity has been increasing. Many of the research studies have provided

an overview of mobile malware characteristics, analysis and detection tech-

niques [68][39][4][60]. A typical work flow of an Android malware detection

system consists of two major steps. First the system extracts the features

to generate a malware signature which can uniquely represent the malware

and second the malware detection mechanism employing these signatures.

Based on the type of features extracted, the existing Android malware anal-

ysis studies can be classified into two broad categories: static analysis and

dynamic analysis. Static analysis examines the features extracted from the

application binary. Dynamic analysis evaluates features derived from an ap-

plication's runtime behaviour. In the case of dynamic analysis, a simulated

environment may be needed to execute and monitor the behaviour of an ap-
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plication. Whereas, in the case of static analysis, features are extracted by

analysing different application components without executing the application

itself.

Researchers have examined various components of Android binaries for static

analysis e.g., files such as classes.dex, AndroidManifest.xml, resources.arsc,

source code files and directories such as assets, META-IN, and res [23][67][33].

For example, a number of studies have analysed permissions in AndroidMan-

ifest.xml for the static analysis [58][34][11][9][33][67]. In DroidMat, along

with permissions other features such as intents, component deployment and

APIs from the Manifest were analysed using different machine learning algo-

rithm such as k-means, k-nearest neighbors, and naive Bayes [64]. Similarly,

DREBIN analysed intents, permissions, app components, APIs, and network

addresses using support vector machines [10]. The study was able to de-

tect malware with 94% accuracy. Apart from the analysis of the Android

binary components, many of the studies have introduced more robust static

analysis techniques based on the analysis of structural or semantic features.

DroidSafe, a static Android analysis tool, examines the data flow of the

application [28]. In CLAPP, authors examined Dalvik bytecode to extract

static features such as the number of loop iterations and the body of the loop

statements [25]. In contrast to static analysis techniques, studies based on

dynamic analysis examine the results generated during the execution of the

application [66]. TaintDroid, An Android malware analysis tool, monitors

the interaction of the Android application with third-party applications [22].

10



Another dynamic analysis tool, Crowdroid, examines dynamic system calls

of the Android application [14]. ProfileDroid, monitors and profiles activi-

ties at four different levels: static, user, OS and network [62]. Another tool

RiskRanker employs techniques such as control flow graph analysis for de-

tecting Android malware samples [29].

Though many of the studies have presented various static and dynamic anal-

ysis techniques, there are certain limitations of these techniques. Static anal-

ysis techniques are sensitive to various obfuscation techniques as obfuscation

can alter the components of the Android binary such as source code and the

control flow of the program. Static analysis does not execute the application,

hence, it can not capture the details such as dynamic loading of malicious

payload, network activities, malicious objects generated at runtime, etc. Also

extraction, parsing and analysis of the static features can be a time consum-

ing task. Hence it is often inefficient for large scale analysis. In the case of

dynamic analysis, though these techniques can provide accurate assessments,

a significant amount of time and system resources are needed to set up the

simulated environment for every test case, to execute and monitor each ap-

plication and finally to analyse the generated results. Hence, applying such

techniques for a large scale analysis is a challenging task. Malware writers

can misdirect dynamic analysis by using techniques such as tuning the sys-

tem for virtual environment and active debuggers.

In contrast to the previous systems based on generating signatures of the mal-

11



ware sample itself, we propose to develop a system to detect the malicious

Android applications by analysing the Android author profiles/signatures.

The study of ‘Authorship attribution’ aims to solve such a problem. Au-

thorship attribution is the task of identifying the author of an anonymous

application. It provides a way to classify the applications by their respective

authors by examining their writing style. In this chapter, we discuss the

research advances in the field of authorship attribution in the literary and

software domains, followed by the motivation behind our proposed approach.

2.1 Authorship attribution

2.1.1 Literary domain

Authorship attribution in the literary domain is a process to identify the

probable author of a given anonymous or disputed text document. It has

been widely studied since the 19th century. One of the earliest authorship

attribution studies attempted to examine the authorship of Shakespeare's

work [43]. The underlying assumption of the attribution is the existence of

an inherent distinctive writing style, unique to the author. Automated au-

thorship attribution in the literary domain offers various computational and

statistical techniques to characterize the author of a document by employing

a set of textual features that quantify an author's writing style. The features

quantifying an author's writing style are known as style markers. The set of

style markers is termed an author fingerprint or profile. The survey provides

12



a comprehensive overview of features, approaches and methodologies used to

quantify the author's writing style in the literary domain [57]. Researchers

have studied the variety of stylometric features for the authorship attribution

task such as lexical features based on viewing text as a sequence of tokens

(e.g., word length, sentence length, type token ratio, word frequency, spelling

errors), character features based on viewing text as a sequence of characters

(e.g., types of characters like digits, letters), syntactic features based on syn-

tactic pattern used by authors (e.g., frequently used parts-of speech, sentence

structure, syntactic errors), semantic features based on the semantics of the

text (e.g., number of synonyms) and application specific features to represent

an author's style in a particular domain (e.g., types of signatures in e-mail

messages).

Over the years the authorship attribution field evolved substantially lever-

aging the recent advances in areas such as machine learning and natural

language processing. Beyond the traditional focus on the analysis of literary

work, authorship attribution techniques have practical applications in other

fields such as biometric research [26], attribution of electronic texts (e.g.,

email messages, blog posts, web pages) [41], malware analysis [17] and soft-

ware authorship attribution.

In the next section, we discuss the research advancements in the software

authorship attribution domain.

13



2.1.2 Software authorship attribution

Software authorship attribution is a process to identify the author of a given

software by examining the programmer's style. The main hypothesis of soft-

ware authorship attribution is that every software developer has a unique

style of developing software. Software authorship attribution is a much

more difficult problem than traditional literary authorship attribution. In

the traditional setting, authorship information can be extracted by perform-

ing deeper linguistic analysis of an authors' works, for example, vocabulary

richness, tense of verbs and semantic analysis of sentences. In contrast,

computer code has a more rigid format compared to literary work due to the

structure and syntax requirement of any programming language. This makes

extraction of the author's programming style difficult.

However, there are various software components that can still reflect the pro-

grammer's style. While developing any software, every developer has certain

preferences, such as for loops over while loops, the programming language

used, choice of data structures and algorithms, variables and keywords used,

libraries and frameworks included, functions used, naming conventions, em-

ployed development tools, settings and so on. Analysis of software may unveil

the digital identity of a programmer that is reflected through such software

components. The software authorship attribution has a wide range of ap-

plications such as identifying the original author of plagiarized code, finding

the author of a malware sample from a set of suspected attackers, copyright

investigation or resolving authorship disputes over software.
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In the next section, we discuss the origin of software authorship attribution.

2.1.2.1 Origin

The previous attempts in the software authorship attribution domain orig-

inated from the theory proposed by Halstead in the early 1970s [30]. The

theory stated that simple counts of unique operators and operands and the

total number of operators and operands are sufficient to reflect the imple-

mentation and structure of any algorithm. These four metrics proposed by

Halstead became known as Halstead's metrics or software science metrics.

These metrics represent the ‘Internal Quality’ of an algorithm and are un-

likely to be the same among programs written by independent authors. This

theory triggered a number of studies focusing on software similarity detec-

tion. Initially, the focus of these studies was to find similarities between

the programming assignments submitted by students and thus, to detect

the original and plagiarized documents. This research, known as plagiarism

detection, laid the groundwork for software authorship attribution. Along

the lines of plagiarism detection, the researchers started to investigate the

relation between the authors and programs written by them. Similarly to

plagiarism research, this topic started with the analysis of source code and

then evolved into binary code analysis.

Each programmer has a unique programming style which can be used to

characterize programs with respect to the author. This initiated the stud-

ies focusing on extracting style markers of the author from the programs.

15



Researchers started to examine programming style based on the analysis of

various code components such as basic Halstead metrics analysis, variables,

type of statements, functions, keywords, etc.

As the authorship attrition field evolved, researchers started to apply the

attribution techniques in other domains such as in security to find cyber

attackers. In the next section, we discuss the origin of software authorship

attribution studies in the security domain.

2.1.2.2 Application in security domain

A new era of authorship attribution started with the application of the ex-

isting research to a new domain known as software forensics. Spafford and

Weeber proposed to utilize features extracted from pieces of code and the

remnants of software to identify a potential intruder [55]. They defined this

technique as software forensics. This technique could be used to examine soft-

ware in any form including source files, object files, executable code, shell

scripts and so on. Later on, Krsul highlighted the effectiveness of authorship

analysis to enhance real-time intrusion detection systems [38]. He proposed

the use of programmer's style to detect abnormal system behaviour. Follow-

ing this study, authorship attribution raised a lot of interest in the security

domain.

Traditional software authorship attribution studies were based on the selec-

tion of the set of feature metrics to represent the author's style, followed by

16



the method to discriminate the authors. The researchers studied the range

of features such as basic Halstead's metrics, number of spaces, tabs, indenta-

tion, use of upper or lower case for variable names, number of special macros,

and so on. However, most of these proposed metrics were programming lan-

guage dependent. Moreover, the selection of the metrics was a crucial task.

This led to the development of the new techniques such as the n-gram anal-

ysis in the attribution field.

In the next section, we discuss the n-gram analysis techniques for software

authorship attribution.

2.1.2.3 Authorship attribution through n-gram analysis

An n-gram is a sequence of n terms combined together. N -grams can be ex-

tracted as a sequence of bytes, characters or words. The performance of the

n-grams in the software attribution field was first evaluated by Frantzeskou et

al. [24]. Frantzeskou et al. presented a novel approach based on the most fre-

quent byte level n-gram analysis for the source code authorship attribution.

They developed a system to generate the author profiles by extracting the

most frequent byte level n-grams from the source code samples. This promis-

ing method known as the source code author profiles approach (SCAP) was

previously evaluated successfully for natural language authorship attribution

by Keselj et al. [35]. The SCAP system was programming language indepen-

dent and can be seamlessly applied for the attribution of source code written

in any programming language. Software authorship attribution faces a lot of

17



challenges due to a lack of data samples. If enough code samples for a par-

ticular author are not available, it becomes difficult to extract style markers

that can uniquely represent the author's programming style. As the SCAP

approach considers the most frequently appearing byte level n-grams by com-

bining the source code samples of the author, it performed surprisingly well

even with the limited amount of code samples per author. Generally cyber

criminals do not use comments in their code samples in order to hide their

identity. However, the approach was effective even in the absence of com-

ments. Due to various advantages, this study attracted the attention of the

research community and underlined the effectiveness of n-grams to represent

the author's programming style. Many other subsequent studies employed

the n-gram analysis for the authorship attribution task.

Function words such as ‘the’, ‘but’, ‘and’, and ‘or’ have been used exten-

sively in the literary authorship attribution domain as strong markers of an

author's style [57]. Based on a similar hypothesis, Burrows and Tahaghoghi

employed function words extracted from the source code, i.e., keywords and

operators, for the attribution task [15]. They presented a system to generate

the author fingerprint/profiles by leveraging n-grams of keywords and oper-

ators from the source code samples. The system based on n-gram analysis

of the function words proved to be effective for the source code authorship

attribution task.

Later, Kothari et al. evaluated the performance of character based n-grams

and other stylistic and layout based features such as distribution of line size,

18



leading spaces, underscores per line, semicolons, words per line and commas

per line for the attribution task [37]. They observed that character n-grams

produce better author profiles than any of the other mentioned layout and

stylistic features. This is because the character n-grams can capture pro-

gramming style context as well as information, such as names of the variables

and functions, producing strong style markers of the author.

In 2014, Burrows et al. compared the different source code authorship at-

tribution techniques [16]. The study confirmed the effectiveness of n-gram

analysis as presented in the SCAP method [24] for the source code attribu-

tion task.

Other than source code authorship attribution, the n-gram analysis tech-

nique proved to be effective for similar research problems as well. Layton

et al. used n-grams to analyse phishing websites with an authorship per-

spective [40]. The phishing website is intended to steal sensitive, confidential

information such as user names, passwords, or credit card details for ma-

licious purposes from website users by pretending to be a legitimate site.

Layton et al. extended the byte level n-gram analysis approach SCAP for

the analysis of phishing websites. They extracted the most frequent n-grams

from the phishing websites to generate clusters of these websites according

to the phishing campaigns. These clusters were useful to study the size and

scope of each phishing campaign. In another study, researchers evaluated the

performance of byte n-grams for computer virus detection [53]. The popular

plagiarism detection system MOSS uses n-grams to find the degree of simi-
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larity between documents [1].

In the next section, we discuss the motivation behind our proposed approach.

2.2 Motivation

We propose to design an Android authorship attribution system by leveraging

the string components in Android binaries. A string, which can be defined as

a sequence of tokens, is one of the simplest components used for the author-

ship attribution task. A token can be viewed differently in different context.

They are essentially instances of words in context. Software developers have

certain preferences while developing software and they tend to use similar

strings while developing software. The various string components in the pro-

gram such as names of variables, procedures, functions, modules, and labels

reflect the author's choice and thus can produce strong style markers of the

author. As the field of authorship attribution evolved, researchers studied a

variety of string-based features to quantify authors' styles. Starting from

the basic Halstead's metric, string components such as keywords, operators,

operands, variables and function names have been used extensively to analyse

authors' programming styles. Most of the attribution studies have focused

on the analysis of the strings extracted from the source code. However, the

source code samples are not always easily available. Especially in the case

of malware, it becomes extremely difficult to access the source code, as the

malware samples are distributed in the form of binaries. However, the de-
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compiled Android binary still has different string components that can reflect

the Android author's style. Thus, for our analysis we have studied different

kinds of strings extracted from Android binaries.

Using these extracted strings, we further propose to generate author profiles

by selecting the most frequent word n-grams. N -gram analysis has been used

successfully in a variety of research domains including software similarity de-

tection, malware detection, and authorship attribution in the literary as well

as the software domain. Due to the advantages of the n-grams technique, we

propose to develop an Android authorship attribution system based on the

analysis of string n-grams from Android application binaries.
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Chapter 3

Proposed framework

In this chapter, we discuss the Android application background, describe the

types of strings used for our analysis, and present the system architecture.

3.1 Android application background

In this section, we discuss the structure of Android application package file

(APK) along with a description of various components of the APK.

3.1.1 Android application structure

Android is an open source operating system which runs on top of a modified

Linux kernel. An Android application is distributed and installed on various

Android devices as an archive file termed an Android application package file

(APK ). The structure of an APK file is illustrated in Figure 3.1.
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Figure 3.1: The structure of an APK [46]

An APK contains a variety of files and directories as follows:

• AndroidManifest.xml : An essential file in every Android application. It

provides vital application details such as the unique application identi-

fier, permissions required by the application, application version, refer-

enced libraries, and description of several application components such

as activities, services, broadcast receivers and content providers.

• resources.arsc: A file containing pre-compiled resources.

• classes.dex : This is an Android Runtime ART (which is a predecessor

of Dalvik machine) executable file also known as a DEX file. It contains
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compiled Android classes in .dex format for Android Runtime. Most of

the APKs have a single DEX file. However, a larger APK is divided into

multiple classes.dex files due to the size limitation of DEX files [47].

• META-INF : The directory containing several files responsible for en-

suring the integrity and security of the application. It includes MANI-

FEST.MF — the manifest file which stores metadata of the application,

CERT.RSA — the digital certificate of the application, and CERT.SF

— the file containing list of resources and SHA-1 digest.

• res : The directory containing resources not compiled into resources.arsc.

• assets : The optional directory containing external resource files.

• lib: The optional directory containing compiled libraries in sub directo-

ries sorted as per specific processor. For example, lib/armeabi directory

contains compiled code for all ARM based processors.

For the string analysis, we examine the classes.dex file. In the next section,

we discuss the structure of an Android DEX file.

3.1.2 DEX file structure

Among the files and directories present in the APK, classes.dex is the most

crucial file of the APK as it contains all of the application logic and work

flow. The Android application code is written in Java. During the applica-

tion compilation process, all the Java source code files are first compiled as
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.class files containing Java bytecode. However, the Android Runtime which

is responsible for executing the Android application recognizes only Dalvik

bytecode. Thus, it requires files in dex format. Hence, Java .class files are

further compiled into classes.dex files by dx tool.

Figure 3.2: The structure of a DEX file

The structure of the DEX file is illustrated in Figure 3.2. The DEX file

is partitioned into a number of sections. The DEX file consists of a header

section containing the header information followed by several identifier lists
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such as string, type descriptors, prototype, field, method, and class defini-

tions. These identifier lists define all the functional content used by the DEX

file such as variables, arrays, primitive data types, methods, and classes. Af-

ter the list of identifiers, the DEX file has a data section containing the actual

implementation data supported by the identifiers defined in the previous sec-

tions. Every element defined in the implementation list sections maintains

the offset pointing to the corresponding entries in the data section. For ex-

ample, the string identifier list section maintains offsets of all kinds of strings

used in the DEX file. These strings are used for naming various program en-

tities such as class, field, or local variable names or as the constant objects in

the source code (e.g., string literals). The string offset points to the location

in the data section where the string has been used. Other identifiers sections

such as type ids, prototype ids, field ids, method ids, and class defs, also

maintain the list of offsets pointing to the data section where the identifiers

have been actually used. However, other than maintaining references to the

data section, these sections also contain references to the string identifier list.

For example, a class named AccountActivity will have a reference to the class

data in the data section as well as a reference to the actual string Accoun-

tActivity defined in the string identifier section. This layout structure of the

DEX file is defined in the formal Android development specification [48].

In the next section, we discuss the different types of strings extracted from

the APK for our analysis.
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3.1.3 Types of strings

The several types of identifiers present in the DEX file ultimately refer to a

string. We propose to analyse these string components found in the DEX

file. The various string components such as classes, methods, and variables

used in the data section are linked to different identifier sections depending

upon their type. Though Android application development should follow

the specifications and guidelines stated by the official Android Development

community, malware writers often violate these specifications to include ma-

licious code inside the Android application. One of the approaches is to hide

the malicious code by placing it in the data section of the DEX file while

avoiding it being referenced by elements of the identifiers sections such as

class ids or method ids [6][7]. The advantage of such code hiding is that it

makes the reverse engineering of the application difficult. Reverse engineering

is the process of examining the piece of software by analysing its components

in order to understand the design, work flow of the software or to replicate

the software functionality. Many Android reverse engineering tools analyse

the DEX file of an APK. The identifier lists in the DEX files are typically

used to invoke the various methods and classes and are useful for analysing

the workflow of the application. However, the code hiding technique prevents

the reverse engineering of an application, and thus it becomes difficult for

anti-malware scans to detect such malware.

Due to such code hiding techniques, strings used in such hidden code do not

have references to identifier sections other than the string ids list. Thus,
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we differentiate the strings present in the data section of the DEX file as

‘referenced strings’ and ‘unreferenced strings’. The referenced strings have

a reference to the identifier list other than the string offset list, whereas the

unreferenced strings are referred to only by the string identifier list. The

referenced strings represent classes, methods, or different data types in the

application depending on the type of the identifier list referring to them.

Thus, these strings form a part of the functional, executable code of the ap-

plication. On the other hand, the unreferenced strings are only referenced by

the string offset list, and thus consist solely of non-executable code. These

strings can contain hidden, interesting or malicious code details. For ex-

ample, malware writers often use hard coded URLs, email addresses, and

malicious code samples in the form of strings in malware applications. Thus,

analysis of such hidden unreferenced strings can reveal malicious activity em-

bedded in Android applications. We therefore analyse unreferenced strings

found within the DEX file of the Android application. We also analyse the

impact of all the DEX strings components, i.e., by combining both unrefer-

enced and referenced strings for the authorship attribution task.

Other than the DEX strings present in the DEX file, an APK contains an-

other source of string components, i.e., the resource file ‘strings.xml’. The

file strings.xml is an XML resource file. This file is located under the res/-

values/ directory in the APK. It provides a list of all the strings that can be

referenced within the application source code or from other resource files of

the application [52]. Android developers may define some of the strings that
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have been used throughout the application. These strings are hard coded in

this file. Following is the example of strings.xml file format as specified by

the official Android Development community [50].

<resources>

<string name="test_text">Test</string>

<string name="clear_text">Clear</string>

<string name="wifi_connection">The active connection is

wifi.</string>

<string name="mobile_connection">The active connection is

mobile.</string>

<string name="no_wifi_or_mobile">No wireless or mobile

connection.</string>

</resources>

Android developers use the attribute ‘name’ of the XML element ‘string’

to define the string used throughout the application. These author-defined

application strings can be a strong style marker denoting the author's writ-

ing style and pattern. Thus, we examine the author style based on these

‘application strings’ as well.

Below is a summary of the different kinds of strings used for our analysis:

• Unreferenced strings: The strings present in the DEX file having

reference to only the string identifier section.

• Referenced strings: The strings present in the DEX file having ref-
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erences to the string identifier section and any of the other identifier

sections.

• DEX strings : All the kinds of strings present in the DEX file, i.e.,

the set of referenced and unreferenced strings.

• Application strings : The strings extracted from the XML resource

file strings.xml.

• All strings: All the above specified strings.

We evaluate the performance of these strings for the task of identifying the

author of Android applications. In the next section, we discuss the architec-

ture of our proposed system.

3.2 System architecture

The architecture of the proposed system is depicted in Figure 3.3. All the

available Android binaries of Android authors are first collected for the anal-

ysis. To analyse the role of strings for the task of Android authorship at-

tribution, the proposed system consists of several steps: the extraction of

different kinds of strings from the Android APK, followed by feature gener-

ation based on string n-grams, feature vector generation for creating author

profiles. Every APK belonging to each author in the dataset undergoes these

steps. The generated author profiles are then used to classify any unknown
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Figure 3.3: The proposed system architecture

APK to one of the Android authors in the dataset. We discuss each step in

detail in the following sections.

3.2.1 String Extraction

The string extraction is the initial preprocessing step focusing on the extrac-

tion of essential string components from the APK file. These strings are used

for generating the author's stylistic features. These features are further used

for representing the author's programming style and serve as the basis for

classification of Android applications with respect to their authors.

In the strings extraction step, the attribution system first unpacks every APK

under the analysis. Depending on the type of the strings considered for the

analysis, the strings extraction procedure differs as follows.

To analyse DEX strings, i.e., all the kinds of strings present in the DEX

file of the application (both referenced and unreferenced strings), the system

first extracts all classes.dex files from the unpacked APK. As the string ids
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section in the DEX file maintains the offset for all kinds of strings used in

the data section of the DEX file, the system extracts the DEX strings by

traversing the string ids list and collecting all the strings referenced by the

list. However, to analyse only Unreferenced strings present in data sec-

tion of the DEX file, the system further discards the referenced strings from

the set of DEX strings. Unlike unreferenced strings which are referenced

only from the string identification section, referenced strings have references

from the string identification section as well as from any of the identifier sec-

tions other than the string identifier section. Hence, to discard the referenced

strings, the system traverses the other identifier lists, i.e., type, prototype,

field, method, and class and then removes strings that are referenced by these

lists. For the extraction of Application strings, the system follows a differ-

ent approach. The system extracts strings.xml from the unpacked APK. The

system then parses this strings.xml file to extract the strings defined by the

attribute ‘name’ of the XML ‘string’ elements. In the case of All strings

analysis, all kinds of strings contribute to the final string data. Thus, the

system extracts both type of strings, i.e., DEX strings from the DEX file

as well as Application strings from strings.xml file. All the extracted strings

during the string extraction step then form the basis for the string n-grams

analysis.

In the next section, we discuss the string n-grams feature generation process.
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3.2.2 Feature generation

Once the system extracts the required strings from the APK, the next step

is to generate features from these strings for generating author profiles. The

system employs word level string n-grams derived from the extracted strings

as features for the author classification task.

An n-gram is a sequence of n terms. Word level n-grams can be viewed as

a sequence of n words combined together from a given sentence or text. For

example, consider a sentence, A computer is an electronic device. From the

given sentence, word level 3-grams can be extracted by combining 3 words

together as follows:

1. A computer is

2. computer is an

3. is an electronic

4. an electronic device.

Here, we have considered white-space to separate two words. N -grams can

also be extracted as a sequence of characters from a given string. However,

such character level n-grams can contain characters belonging to different

words. Whereas, in the case of n-grams at the word level, the semantics

of the original words from a given string is preserved as word level n-grams

represent sequence of whole words. Thus, for our n-gram analysis, we propose

to generate string features at the word level, i.e., word n-grams.
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During the feature generation step, the system generates the list of extracted

strings in lexicographical order. The system outputs each extracted string

on a separate line. The system generates word level n-grams by combining

the words from a string on every line. This is done in order to generate

line bounded n-grams. The advantage of line bounded n-gram is that it

does not contain words from different lines. Strings on different lines are

not necessarily associated. Combining the words belonging to different lines

would have resulted in the generation of n-grams containing words that are

not a part of a single string, therefore by generating n-grams exhibiting

meaningless semantics. Such n-grams would have generated noisy author

profiles which could affect the performance of the system.

While generating line bounded word n-grams, the system ignores a line if

it represents a string with less than n words. However, this can cause a

loss of the information. Thus, the system augments each extracted string

Table 3.1: String n-grams feature examples

1-grams 2-grams 3-grams 4-grams

mReset= <LB>mReset=
mReset=<LB>

<LB>mReset=<LB>

Cookie
value
must
not
be
null

<LB>Cookie
Cookie value
value must
must not
not be
be null
null<LB>

<LB>Cookie value
Cookie value must
value must not
must not be
not be null
be null<LB>

<LB>Cookie value must
Cookie value must not
value must not be
must not be null
not be null<LB>
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with a unique line boundary token at the start and end of the string before

extracting n-grams. The addition of line boundary tokens ensures that every

line contains at least 3 words including the line boundary tokens. Thus, more

features are available to represent an author's style. The line boundary tokens

also give information about the context of the first and the last word. This

can provide crucial information for example, a string beginning with words

like Error or Warning can mean something different than a string containing

such words elsewhere. Line boundary tokens are not added for generating

uni -grams (1-grams) as uni -grams represent only a single word. Table 3.1

demonstrates examples of how the system generates n-gram features from a

string. It shows the n-gram features generated from two strings — mReset=

and Cookie value must not be null. From the table it is clear that there are

no line boundary tokens (<LB>) added for the 1-gram features. Also, in the

case of a string containing only a single word (e.g., mReset=), there is no

4-gram feature available as even with line boundary tokens the given string

contains only 3 words.

The generated word level n-gram features are further used to form feature

vectors. In the next section, we discuss the feature vector generation process.

3.2.3 Feature vector generation

The extracted n-grams in the feature generation stage form the basis of

the feature vector generation process. Many machine learning algorithms

used for classification require numerical representation of features for the
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analysis. Thus, after the extraction of string n-grams, the system produces

the numerical representation of generated n-grams features in the form of

vector. A vector is defined as a list of objects. A numerical feature vector is

a series of numbers representing different features.

In the feature vector generation process, the system calculates frequencies of

extracted word n-grams to represent each APK under analysis. The system

generates a frequency vector for every APK. Every element in the feature

vector represents the number of times a particular n-gram occurs in a given

APK. For example, consider the following strings extracted from an APK:

• Cookie map must not be null

• Cookie name must not be empty

These extracted strings produce a total of 12 word level 3-gram features as

follows:

• Word 3-grams extracted from first string: <LB> Cookie value, Cookie

value must, value must not, must not be, not be null, be null <LB>

• Word 3-grams extracted from second string: <LB> Cookie name,

Cookie name must, name must not, must not be, not be empty, be

empty <LB>

Thus, in the above case, the APK has 11 unique word level 3-gram features,

i.e., [<LB> Cookie value, Cookie value must, value must not, must not be,

not be null, be null <LB>, <LB> Cookie name, Cookie name must, name
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must not, not be empty, be empty <LB>] which can be represented in the

form of frequency vector as:

v = [1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1]

Here, each element in the vector represents the frequency of the corresponding

n-gram feature. The system generates feature vectors for every Android

application of each author. These vectors are then used to generate Android

author profiles using a supervised learning process. In the next section, we

discuss the supervised classification process used to identify the author of an

Android application.

3.2.4 APK classification

After the feature vector generation step, the system employs these vectors to

train the supervised classifier.

In a supervised learning process, the system analyses the set of labelled input

data, i.e, samples with known output label to produce an inferred function

which can be used further for predicting the label for unknown, unseen sam-

ples. A supervised classification algorithm first learns the characteristics of

given input samples belonging to different categories. After the learning pro-

cess, the algorithm classifies the unseen, unknown sample into one of the

existing categories.

Our proposed Android attribution system employs feature vectors generated
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in the previous stage as input data for the supervised classifier. The system

analyses the set of feature vectors belonging to each Android author whose

authorship is known. The system trains the supervised machine learning

classifier in order to produce the fingerprints/profiles/signatures of all the

authors in the dataset. Using these inferred author profiles, this trained

classifier model predicts the authorship of any unknown Android applica-

tion.

Figure 3.4: The separating hyperplane — SVM

We selected support vector machine SVM as the supervised classifier for our

system. The support vector machine classifier is one of the robust classi-
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fiers [3]. It has successfully been applied to solve real world problems such as

pattern recognition, face detection, handwritten digit recognition, and text

categorization [13]. SVM works on a principle of building a set of hyper

planes separating samples belonging to different classes [20]. The goal of

SVM is to generate the separating hyperplanes having maximum distance

from the nearest training data sample in a feature space. Figure 3.4 shows

the maximum margin hyperplane separating samples of two classes in a 2

dimensional space. The samples present on the maximum distance margins

are known as support vectors. SVM performs well even in high dimensional

feature space. SVM classifier has been successfully used for Android malware

detection and malware family classification system based on strings present

in Android applications, similar to our proposed approach [36]. This system

analysed the string components of APKs to detect a potential malware and

its family. Thus, due to the advantages of SVM, we employed SVM classifier

for our Android authorship attribution system.
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Chapter 4

Experimental setup

In this chapter, we discuss the experimental setup for the system. It includes

details about how the dataset is built, description of various tools and meth-

ods used, implementation details of the system and strategies used for the

evaluation of the system performance.

4.1 Dataset

Our system employs a supervised learning algorithm for the attribution task.

The availability of the labelled dataset is one of the main requirements of any

supervised learning algorithm. Thus, for the evaluation of our system, we

need to have a labelled Android author dataset, i.e., a set of Android de-

velopers with their Android application samples. However, the availability

of the dataset is a major challenge for any authorship attribution study.
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There are no standard open benchmark datasets available for Android au-

thorship attribution research. Though many open source Android malware

projects such as Android Malware Genome project [65], AndroMalShare [12],

Contagio mobile mini-dump [44] host Android samples, the samples are not

grouped by their authors. Thus, we need to manually collect the Android

samples belonging to different authors. We propose to evaluate our system

on three different datasets, i.e., benign authors dataset, malware authors

dataset and dataset of obfuscated applications. We discuss each dataset in

detail in following sections.

4.1.1 Benign application dataset

To build the dataset, we must have Android applications grouped by their

respective developers. According to the specification stated by the official

Android community, each Android APK developer needs to digitally sign

the APK with a certificate, in order to install the APK on any Android de-

vice [49]. This certificate contains the information that uniquely identifies

the developer of the APK, such as metadata along with the public key. The

developer possesses the corresponding private key for the public-key certifi-

cate. The Android system recognizes the developer through this certificate.

When the developer signs the APK, the public-key certificate is attached to

the original APK. The certificate acts as the identity of the developer of the

APK. Thus, we used the certificates attached to the Android application to

collect the samples belonging to the same author. APKs having the same
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certificates are considered to be developed by same author/origin. Some An-

droid developers can generate different certificates to sign different APKs.

However, such cases are out of scope of our analysis.

To build the dataset of legitimate authors, we collected more than ten thou-

sand Android APKs from eight different Android markets (Google play store,

Appland, Anzhi, Aptoide, MoboMarket, Nduoa, Tencent, Xiaomi). We

grouped these APKs by their certificates. Thus, APKs belonging to the

same author/developer were grouped together. Some certificates are pub-

licly available and anyone can use them for signing the APK. Keeping this

in mind, we discarded the APKs signed by public certificates. Android stu-

dio has a provision to sign an APK with debug certificates generated by the

Android SDK tools for debugging the application. However, these debug

certificates are insecure and should not be used for application distribution

purposes [49]. Thus, we also discarded APKs signed by debug certificates.

Also, some of the APKs have been published in multiple markets. We re-

moved such duplicate APKs. Finally, for our dataset, we considered only

authors having more than 20 applications. The final dataset contains a total

of 40 authors with 1559 Android applications.

4.1.2 Malware application dataset

As the risk of Android malware is increasing day by day, our proposed An-

droid attribution system must effectively detect samples produced by An-

droid malware authors as well. As the authorship information of many
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malware samples is not known, the task of collecting the malware sam-

ples grouped by authors is difficult. However, there are Android malware

research communities that provide a platform to share malicious Android

APKs. ‘Koodous’ is an open source, collaborative, web based platform that

allows researchers to share and analyse Android malware samples [19]. The

system has various features that facilitate Android malware analysis such as

effective navigation through the entire repository, a set of APIs and Python

modules for APK analysis, and the provision of customizable rules (written

in Yara format) for defining specific tasks. Due to the various advantages of

Koodous system, we built the malware authors dataset using this system. We

used the search API provided by the system to search for malicious APKs

having the same certificate. We used the same concept of using certificates

embedded in the APK to group the Android malware samples by their au-

thor. We collected a total of 262 malicious APKs from 10 different authors

with each author having at least 10 unique malicious APKs.

4.1.3 Obfuscated application dataset

Obfuscation is a process to make the program difficult to analyse and under-

stand for both humans and decompilation tools without changing its func-

tionality [63]. Obfuscated Android apps are difficult to reverse engineer.

Modern obfuscation tools provide many functionalities such as encryption

of strings, code obfuscation, control flow obfuscation, and optimization by

removing redundant code. Due to a wide range of advantages, Android ob-
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fuscation is gaining popularity among both legitimate as well as malware

writers. As obfuscation affects the underlying APK, it is important to test

the system performance over the dataset of obfuscated applications.

However, collecting obfuscated Android APKs is a challenging task. One of

the ways to collect such APKs is first to identify the unobfuscated APKs in

our existing benign and malware application datasets. Using different An-

droid obfuscation tools on these unobfuscated APKs, we can then generate

a dataset of obfuscated applications. There are research studies focusing

on the detection of the type of obfuscation used in Android binaries [61][8].

However, none of the proposed methods is 100% accurate and therefore, we

can not rely on these techniques to identify and collect obfuscated APKs.

Another way to build an obfuscated dataset is first to collect the source code

of the Android applications and then apply different obfuscation techniques.

Generating obfuscated APKs from the source code is beneficial as most of

the Android obfuscation tools work at the source code level. Due to security

concerns and the possibility of code theft, many Android developers do not

host their code publicly. Thus, collecting source code samples is not a trivial

task. The open source community ‘GitHub’ is one of the largest open source

collaborative platforms.1 GitHub provides the ability to host and share mul-

tiple projects through repositories. A repository is used to host a particular

project. It can be viewed as a location to store all the project contents. The

project can be retrieved by cloning/downloading the repository on to a lo-

1https://github.com/

44



cal machine. Many Android developers share their Android projects on the

GitHub platform. Thus, we collected the source code samples from GitHub.

We used API provided by GitHub to search for the Android repositories. We

downloaded the Android repositories hosted by different Android authors.

After cloning the source code of Android projects from various repositories,

we employed different obfuscation tools to generate the dataset of obfuscated

applications. However, as GitHub is a collaborative platform, a single repos-

itory can have multiple contributions; i.e., it can contain code developed by

different authors. Considering this, for our dataset we selected repositories

satisfying the following criteria:

• The repository must not be a forked repository. A forked repository is

a copy of another repository. Developers often copy a project from an-

other repository belonging to a different author to perform additional

experiments or to add extra functionalities without changing the orig-

inal repository content. Hence, we discarded such forked repositories

as they can potentially contain code belonging to multiple authors and

do not represent the coding style of a single author.

• The repository should not have more than one contribution as multiple

contributions indicate that the project is developed by multiple authors.

• The repository should not contain code to include external repositories

during the application compilation process. Android developers can

add external projects belonging to some other author as project depen-
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dencies. During the application build process such external projects are

complied and added into the generated APK. Hence, each repository

must be examined manually to ensure that it does not contain such

external project dependencies.

We initially collected more than 255 Android projects from 28 authors. How-

ever, many of the projects could not be compiled due to various reasons such

as being unable to locate external dependencies files, compilation errors due

to incomplete code or improper project settings. We discarded authors hav-

ing very few Android projects as enough samples are needed to represent the

author's style. We were finally able to generate a total of 96 unobfuscated

APKs belonging to 9 authors. We compared the system performance over

this set of unobfuscated APKs with the set of obfuscated APKs generated

using different obfuscation tools applied to the final 96 source code projects.

Different obfuscation techniques are used to obscure the application. Obfus-

cation techniques can be classified into the following four major categories

depending on the nature of transformation performed by them [18]:

1. Layout obfuscation: These obfuscation techniques alter the overall lay-

out of the code by performing transformations such as removing com-

ments, debug information and unused code, and renaming different

identifiers, i.e., methods, variables, classes, and packages.

2. Data obfuscation: These techniques transform the code by modifying

various code components such as splitting the variable declaration and
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initialization, encoding the data, and altering conditional statements.

3. Control obfuscation: These techniques modify the flow of the program

to make it more difficult to reverse engineer. It includes techniques

such as the addition of dead code to alter the data flow and changing

the order of execution of statements.

4. Preventive transformations: These techniques do not obfuscate the

code itself, rather they make the decompilation of the code difficult

by exploiting the weakness in current decompilation techniques. For

example, HoseMocha, a Java program was designed to prevent decom-

pilation of Java applications by Mocha decompiler [18]. It adds an

extra instruction statement after a return statement in every method

of the Java program. This does not affect the actual working of the

Java application. However, Mocha decompiler fails to decompile such

application.

Many of the Android obfuscation tools employ a combination of these obfus-

cation techniques to provide various functionalities such as name obfuscation,

resource obfuscation, control flow obfuscation, code optimization and so on.

Though there are many Android obfuscation tools available, most of them

are commercial with high cost. For our research, we used free/evaluation

version of these tools. We selected 3 Android obfuscation tools as follows:

1. ProGuard : ProGuard is one of the most popular Android obfuscation

tools [56]. It is free and easy to use. It is integrated with Android
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Studio [51]. Android Studio is the official IDE for developing Android

applications. Android projects developed with Android Studio can be

easily configured for obfuscation using ProGuard. Android Studio pro-

vides the default configuration settings for obfuscation using ProGuard;

however, the developer can also modify these settings for customized

obfuscation. ProGuard is considered as a Java class file obfuscator as

it alters Java bytecodes. As such, it obfuscates Java class files of the

Android application. These obfuscated Java class files are compiled fur-

ther to produce DEX files. ProGuard performs three major steps for

obfuscating the Android APK. Initially, it performs code shrinking by

removing unused code such as unused methods, variables, and classes.

Developers can also configure ProGuard to remove unused resources.

It then performs Java bytecode optimization. Finally, it obfuscates the

code by renaming variables, classes, methods, and fields to some short

random meaningless words. ProGuard can also use a user-defined dic-

tionary for renaming. Each of the steps, i.e., shrinking, optimization,

and obfuscation, is optional as a developer can enable or disable it. The

default ProGuard obfuscation configuration file without any optimiza-

tion provided by Android Studio is sufficient for removing unused code

and can effectively obfuscate Android applications. Thus, we employed

this default configuration file to generate the obfuscated APKs using

ProGuard.

2. Allatori : Another Android obfuscator used in this work is Allatori [2].
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It can be seamlessly integrated with the Android Studio APK build

process. Though Allatori is a commercial Android obfuscation tool, its

free educational version with all the features of the commercial version

is available. Similar to ProGuard, Allatori is a Java obfuscator which

obfuscates Java class files. It also provides functionality to rename

variables, classes, methods, fields, and packages. However, unlike Pro-

Guard, it does not provide an option to use a user-defined dictionary

for renaming, and employs its own internal functionality for obfuscat-

ing these string components. Apart from name obfuscation, Allatori

provides features such as string encryption, control flow obfuscation,

and optimization. String encryption enables encoding of string data

used in the application. We used the default Allatori configuration in

which all the above features are enabled.

3. DashO : DashO is a commercial Android obfuscation tool with a free

evaluation version available [54]. Allatori and DashO both have sim-

ilar configurations. DashO is a Java obfuscator which provides string

encryption, control flow obfuscation, and optimization in addition to

name obfuscation by renaming variables. We used the default config-

uration setting provided by DashO which has all of these mentioned

features to generate the obfuscated APKs.

We used the above tools to obfuscate a total of 96 Android source code

projects cloned from GitHub. Thus, each Android application project pro-
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duced one unobfuscated APK and 3 versions of the obfuscated APKs using

the above obfuscation tools. Table 4.1 summarises the datasets used for the

analysis.

Table 4.1: Summary of datasets

Dataset Authors Apps Description

Benign 40 1559 Benign applications collected from 8
different Android markets

Malicious 10 262 Malicious applications collected from
Koodous system

Obfuscated 9 96 Collected from GitHub platform. Each
project produced 1 unobfuscated and 3
obfuscated APKs using different obfus-
cation tools

In the next section, we discuss the implementation details of the system.

4.2 Implementation details

In this section, we discuss the various methods, tools and techniques used for

the implementation of the proposed Android authorship attribution system.

We evaluated the system performance over each dataset discussed in the

previous section. The system extracts various string components from APKs

in the given dataset. These extracted strings are used to generate author

profiles and to train the supervised classifier. We implemented the proposed

system in the Python language. We used various Python modules available
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in the scikit-learn library. Scikit-learn is a Python-based, open source, ef-

ficient library for handling various data mining and analysis tasks [45]. It

provides implementations of a wide range of machine learning algorithms.

Scikit-learn provides functionality to generate feature vectors from string n-

grams extracted from every APK under the analysis. We employed SVM

(support vector machines), a supervised machine learning classification algo-

rithm to train the classifier which is then used to predict the authorship of the

Android applications. After the feature vector generation process, we used

scikit-learn to incorporate the linear SVM classifier in our attribution system.

Another important tool used in our analysis is DroidKin. DroidKin is

a lightweight tool used to measure the similarity between Android appli-

cations [27]. It analyses DEX files and other metadata such as resources,

libraries, and certificates to calculate the similarity between different An-

droid applications. Android authors can repackage existing applications to

produce more APKs. Many of the malware writers use repackaging tech-

niques to generate malware samples from existing legitimate applications.

Such repackaged APKs have identical or almost similar DEX file content.

Authors having such similar APKs can affect the performance of our system.

This is because string components extracted from APKs having similar DEX

file content will be almost identical. Thus, n-grams extracted from such

strings can generate false representations of Author profiles. DroidKin ex-

amines the APKs of an author and can identify such similar APKs. Thus, we
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evaluated the system performance by discarding such identical APKs from

our dataset. DroidKin also provides APK similarity scores between APKs.

We used this similarity score as a threshold value. We evaluated the system

performance over the dataset generated after discarding all the APKs having

equal or greater similarity score than a specified threshold. This analysis can

give insights into the system performance over datasets having varied levels

of APK similarity. We present the detailed analysis of this comparison in the

next chapter.

4.3 Evaluation methodology

In this section, we discuss how the system performance is evaluated. We also

discuss various measures used for evaluating the system such as accuracy,

precision, recall, and F1 measure.

4.3.1 Cross validation

The goal of our proposed authorship attribution system is to classify an un-

known APK to one of the authors from a set of candidate Android authors

available in the given dataset. Any supervised classification task consists of

two stages, i.e., a training stage and a testing stage. During the training

stage, our system trains a supervised classifier using training data, i.e., a set

of known APKs belonging to a set of known authors. This trained classi-

fier can then map any unknown APK (i.e., APK not used for the training
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purpose) to its predicted author from a set of known authors (i.e., the set

of authors used for training a classifier). During the testing stage, the per-

formance of the classifier is evaluated over test data samples. One potential

approach is to divide the given dataset into two parts, one for training the

classifier and another for testing. However, a fixed set of samples may not

be effective for training the classifier. This is because if a classifier is trained

over a fixed set of samples, it can produce an estimation that is biased to-

wards these samples. Thus, we used cross validation for our evaluation.

In k -fold cross validation, the given dataset is divided into k equal part-

s/folds. Some of the parts are selected as a training set and others as a

testing set. Typically the instances are randomly selected to be included in

folds. However, this might lead to samples of only some of the classes to

be selected for training the classifier which can generate biased results. The

stratified cross validation technique provides a solution for this problem as

it preserves a proportionate amount of samples belonging to every class in

each fold. The classifier is trained over training set samples and its perfor-

mance is evaluated over test samples. This procedure is repeated k times

with different sets of training and testing samples. Finally, the results of k

experiments are aggregated to get the final evaluation results. For our sys-

tem, we adopted a 5-times 5-fold stratified cross validation strategy. During

each experiment, we divided the dataset into 5 parts. We used one part for

evaluating the system and the rest for training the classifier. We performed

stratified cross validation experiments repeatedly for comparing performance
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of different kinds of strings on a single dataset. To ensure repeatability of

folds for each of such experiments, we used ransom seed. Figure 4.1 shows

Figure 4.1: 5-fold cross validation

the k -fold cross validation with k=5. It consists of 5 experiments each with

different sets of training and testing APKs. In 5-times 5-fold cross validation,

these 5-fold cross validation experiments are repeated 5 times. In the next

section, we discuss different measures used for evaluating the performance of

the system.
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4.4 Evaluation metrics

The goal of the classification model is to correctly classify an input sample

to one of the output classes from a set of discrete output categories. Our

Android authorship attribution system trains a classifier over training sam-

ples. The classifier then predicts the author of APKs in the test data. The

best way to represent such output predictions of the classification model is to

use a confusion matrix. A confusion matrix is an N ×N contingency table,

where N is the number of output labels. It shows the number of samples

correctly and incorrectly classified by the model as compared to the actual

target output values. For example, consider a binary classification model

with output labels/categories as either Positive or Negative. The prediction

Table 4.2: Confusion Matrix for a binary clasification problem

Target positive Target negative
System positive True positive (tp) False positive (fp)
System negative False negative (fn) True negative (tn)

results of such a binary classification model can be represented in the form

of a 2 × 2 confusion matrix as shown in table 4.2. In this table, target/ac-

tual output categories are represented by columns; whereas, rows represent

the system predictions. True positives indicate the number of positive sam-

ples correctly labelled as positive by the system. Similarly, true negatives

represent the number of correctly predicted negative samples. An ideal clas-

sification model would correctly assign samples to their actual categories and
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thus, it will not have any false negative or false positive samples as these cells

represent number of incorrectly predicted positive and negative samples re-

spectively. Various measures can be calculated from a confusion matrix to

evaluate the system performance as follows:

• Accuracy : Accuracy is the most basic measure used for evaluating

the classifier performance. Accuracy is calculated as the number of

correctly predicted samples divided by the total number of samples. It

represents the proportion of correct predictions made by the classifier.

Accuracy =
tp + tn

tp + fp + tn + fn

However, accuracy is not sufficient to evaluate the performance of the

classifier as it can be misleading in the case of highly imbalanced data.

In an imbalanced dataset, the number of samples representing a sin-

gle class (majority class) is significantly high as compared to the other

class samples (minority class). In such a case, the classification model

can produce high accuracy by simply classifying every sample into the

majority class. Nevertheless, such a model is not practically useful as

it fails to correctly predict the minority class elements. Thus, we used

additional measures, i.e., precision and recall, to evaluate the perfor-

mance of the classifier.

• Precision : Precision is calculated as the number of samples correctly

predicted as positive divided by the total number of samples predicted

56



as positive in the dataset.

Precision =
tp

tp + fp

It demonstrates the exactness of the classifier as it represents the pro-

portion of samples predicted as positive that are actually positive.

• Recall : Recall is calculated as the number of samples correctly pre-

dicted as positive divided by the total number of actual positive samples

in the dataset.

Recall =
tp

tp + fn

It demonstrates the comprehensiveness of the classifier as it represents

the detection rate, i.e., the proportion of actual positive samples that

are correctly predicted as positive.

• F1 score : F1 score also known as F1 measure combines precision and

recall into a single measure. It is calculated as the harmonic mean of

precision and recall.

F1measure =
2 ∗ Precision ∗Recall

Precision + Recall

The above measures are described for evaluating the binary classification

model. However, our system employs a multiclass classification model as it

predicts the author of a test APK from a set of discrete authors. To evalu-
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ate the performance of such models, also known as multinomial classification

models, the above measures can be aggregated over a set of output class

labels in two ways, i.e., microaveraging or macroaveraging .

In the case of microaveraging, a multinomial classification problem is con-

verted to a binary classification problem by combining predictions over all

the class labels into a single confusion matrix. Thus, an N × N confusion

matrix, where N is the number of output labels, is converted into a 2 × 2

confusion matrix. This matrix is then used to calculate precision, recall and

F1.

In the case of macroaveraging, performance measures (precision, recall and

F1) are calculated for every class and the results are then averaged to pro-

duce macroaveraged measures. In the macroaveraging method, each class

contributes equally to get the final average results. Whereas, in the case of

the microaveraging method, the final average results are influenced by the

majority class as all classes are combined together to produce the averaged

result. Hence, we calculated macroaveraged precision, recall and F1 scores

for evaluating the system performance.

58



Chapter 5

Experimental results and

discussion

In this chapter, we discuss various experiments carried out for evaluating

system performance followed by the analysis of the experimental results.

5.1 Preliminary analysis

We conducted a variety of preliminary experiments after implementing the

proposed Android authorship attribution system. In the preliminary analy-

sis, we examined different parameters to improve the system performance.

• Size of n-grams: Initially, we analysed the system performance by

changing the size of word n-grams. We observed the improvement

in system performance with increase in size of n-grams from 1 to 3.
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This is because of more contextual information present in higher order

n-grams as compared to lower order n-grams. However, the system

performance degrades with further increase in size of n-grams. Our

system ignores the strings having less than n terms even after addition

of line boundary tokens. Furthermore, many 4-grams or even higher

order n-grams will be unique which leads to data sparsity (i.e., lack

of enough data for accurate estimation).These factors may have played

an important role in generating poor representations of author styles.

Thus, we used 3-grams for further experiments.

• Feature vectors: We compared the performance of plain frequency

count feature vectors with that of tf-idf (term frequency and inverse

document frequency) count feature vectors . Frequency count vectors

(discussed in the section 3.2.2) represent the number of times a feature

(in our case a word level n-gram) occurs in a given APK. Whereas, in

the case of tf-idf count feature vectors, the n-gram features appearing

in many APKs get lower weight in a feature vector. Tf-idf vectors did

not enhance the system performance; hence, we employed the frequency

count feature vectors for the rest of the experiments.

• Linear SVM classification strategies: Our system handles a multi-

nomial classification problem as it attributes an unseen APK sample

to one of the candidate Android authors in the dataset. We employed

the linear SVM classifier provided in the scikit-learn Python library as
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a supervised classifier. Support vector machine classifiers inherently

support binary classification. However, it can handle a multinomial

classification problem by transforming it into a binary classification

problem by two techniques - One vs one (OVO) and One vs rest

(OVR). In the case of the One vs one classification technique, the

classification algorithm generates n ∗ (n − 1)/2 binary classifiers for n

output classes. Each classifier is trained to predict samples belonging

to two different classes. For an unseen sample, the prediction results of

all the classifiers are considered. The class having the highest number

of predictions is selected as the final output class of the unseen sample.

In the case of the One vs rest technique, the classification algorithm

produces only n binary classifiers. Each classifier is trained to distin-

guish samples belonging to one particular class from samples of the

rest of the classes. Every classifier produces the score of the class for

which it has been trained. For any unseen sample, the class having the

highest score is selected as the final output class.

Linear SVM can implement both the strategies (OVO or OVR) for

handling multinomial classification problems. The One vs rest tech-

nique is preferred and is the default strategy of the linear SVM clas-

sifier [45]. We evaluated the system performance using both strate-

gies. Though both strategies demonstrated similar performance, aver-

age training time for the one vs one technique was significantly higher

than for the one vs rest technique. Thus, we employed the one vs rest
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strategy for further experiments.

Based on the preliminary analysis, we employed 3-gram word level frequency

feature vectors to train Linear SVM classification employing the one vs rest

strategy for the remainder of the analysis. We carried out a variety of exper-

iments to evaluate the system performance as listed below:

1. Evaluating the system over three different kinds of dataset, i.e., datasets

of benign, malware and obfuscated applications.

2. Evaluating the system over datasets with different level of APK simi-

larity.

3. Comparing the performance of different kinds of strings (i.e., all, DEX,

unreferenced and application strings described in section 3.1.3)

We discuss these experimental results in the next sections.

5.2 Benign application dataset results

In this section, we discuss the performance of our system on the benign ap-

plication dataset (section 4.1.1). This dataset contains a total of 40 Android

authors with 1559 APKs. All experiments are performed 5 times each with

5-fold cross validation.
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5.2.1 Comparison of different types of strings

We compared the performance of the Android attribution system over vari-

ous kinds of strings. Android author profiles are generated using word level

3-grams extracted from these strings. These profiles are then used to predict

the author of an unseen APK. These results are illustrated in table 5.1. It

shows the different performance measures along with the training time, i.e.,

the time taken by the classifier to train and produce author profiles.

Table 5.1: Performance comparison of different types of strings over the
benign application dataset

String Type Accuracy Macro
Average
Precision

Macro
Average
Recall

Macro
Average
F1

Average
Training
Time
(Seconds)

All 98.19% 98.13% 97.49% 97.55% 606.78
DEX 98.17% 98.12% 97.48% 97.55% 625.30
Unreferenced 97.55% 97.42% 96.52% 96.64% 208.81
Application 94.40% 95.93% 92.80% 93.10% 5.53

The results for all kinds of strings and all DEX strings are quite similar.

These two kinds of strings perform better than unreferenced strings in the

DEX file or application strings present in the strings.xml file. It is quite

apparent as more strings are preserved in the case of All and DEX strings.

Thus, more features can be extracted for analysing authors' styles. Nev-

ertheless, the training time of the classifier is significantly reduced in the

case of unreferenced and is lowest for application strings. Around 36 million

63



strings are processed in the case of All and DEX strings which is reduced

drastically in the case of unreferenced and application strings (to around 12

million and 380 thousand strings, respectively).

5.2.2 Effect of APK similarity

In this section, we discuss the performance of our system over the datasets

with varying levels of APK similarity.

We used the DroidKin tool which compares two APKs and provides a sim-

ilarity score between them (discussed in the section 4.2). We examined the

similarity between APKs of every author in the dataset. We used the similar-

ity score as a threshold value. All the APKs of an author having a similarity

score equal or greater than the specified thresholds are discarded from the

dataset. After removing such similar APKs, authors having less than 5 APKs

are also discarded, as at least 5 APKs are needed to perform stratified 5-Fold

cross validation experiments and have at least one app from each author in

each fold. The performance of the system over datasets at varying similarity

thresholds is illustrated in Figure 5.1. This figure shows the performance of

all four kinds of strings by varying APK similarity level threshold. In every

string performance chart, the X axis indicates the performance of the system

on the scale of 0 to 100%, whereas, the Y axis indicates the similarity level

threshold of APKs in the dataset.

The results are quite predictable. The system performance gradually de-

grades with the APK similarity level threshold. Removal of similar APKs
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Figure 5.1: APK similarity threshold vs system performance on the benign
dataset

from an author leads to a reduction of frequently appearing strings, which

affects the frequency count of string n-gram features used to represent the

author's style. Another contributing factor is decrease in the size of the

dataset with every similarity threshold. Initially the dataset contains 40 au-

thors with 1599 APKs, whereas, the dataset with a similarity threshold of

65 contains 20 authors with only 270 APKs. Fewer features are available to

represent an author's style with a lower number of APKs per author. Thus,
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the performance of the attribution system is lower on a smaller dataset.

Nonetheless, our system performance is quite promising even with the small

amount of data and lower number of APKs. For example, even at the simi-

larity threshold of 65%, the system maintains an accuracy of around 88% for

All and DEX strings; whereas unreferenced and application strings are able

to predict the author of an unseen APK with an accuracy of 84% and 78%,

respectively.

5.3 Malware application dataset results

In this section, we discuss the performance of our system on the malware ap-

plication dataset (section 4.1.2). This dataset contains a total of 10 Android

authors with 262 malicious APKs. We performed the same set of experiments

as previously discussed for the benign application dataset.

5.3.1 Comparison of different types of strings

We compared the performance of our system over various kinds of strings

extracted form malicious applications. These results are shown in table 5.2.

Similar to the performance of different kinds of strings over the benign appli-

cation dataset, in the case of the malware dataset, the All strings approach

performs better than all other kinds of strings due to the higher number of

strings retained. However, the unreferenced and application strings provide

satisfactory results even with a smaller amount of strings and lower training
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Table 5.2: Performance comparison of different types of strings over the
malware application dataset

String Type Accuracy Macro
Average
Precision

Macro
Average
Recall

Macro
Average
F1

Average
Training
Time
(Seconds)

All 96.03% 97.00% 96.16% 95.99% 20.80
DEX 95.78% 96.80% 96.04% 95.78% 21.44
Unreferenced 94.76% 95.93% 94.92% 94.70% 8.09
Application 81.63% 85.21% 84.08% 82.12% 0.33

time. The system shows better results over the benign application dataset

(discussed in the previous section) than the malware application dataset.

This is because the malware application dataset is smaller in size than the

benign application dataset. Thus, fewer samples are available for analysis

of a given malware authors' styles. However, even with limited samples,

our system produces good accuracy and demonstrates that it can effectively

identify malware writers as well.

5.3.2 Effect of APK similarity

In this section, we discuss the effect of similarities between APKs on the

malware application dataset.

To examine the effect of APK similarity in the malware dataset on system

performance, we performed the same experiments as discussed for the benign

application dataset (section 5.2.2). The DroidKin tool is used to remove
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Figure 5.2: APK similarity threshold vs system performance on the malware
dataset

similar APKs to generate the malware datasets at different levels of APK

similarity. The results of these experiments are shown in Figure 5.2.

Results on the malware dataset follow similar trends to those on the benign

application dataset; i.e., performance of the system degrades with the simi-

larity threshold. However, the performance is quite volatile due to the small

size of the dataset which is further reduced for the lower values of similarity

threshold. For example, initially the dataset contains 10 authors with 262
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APKs. Even at a similarity threshold of 100% (in this case only APKs hav-

ing identical DEX files are removed), 81 APKs are removed from the original

dataset leaving only 181 samples for the analysis. With every subsequent

similarity threshold value, the number of APKs in the dataset is reduced,

making the dataset smaller. Thus, we observe a few spikes in the perfor-

mance charts shown in Figure 5.2. Nevertheless, even with a small number

of samples, our system can still attribute malware authors. For example, at

the 65% similarity threshold with only 55 APKs and 5 authors available in

the dataset, the system was able to achieve accuracies of around 86% us-

ing All and DEX strings, around 84% for unreferenced strings and 77% for

application strings.

5.4 Obfuscated application dataset results

In this section, we discuss the performance of our system over the obfus-

cated applications datasets (section 4.1.3). For this we collected a total of

96 source code Android projects belonging to 9 different authors from the

GitHub repository. From these source code projects, we generated an unob-

fuscated dataset version along with 3 versions of obfuscated datasets using

the ProGuard, Allatori and DashO Android obfuscation tools. We studied

the system performance over these 4 datasets.
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5.4.1 Comparison of different obfuscation tools over

different kinds of strings

We compared the performance of our system over all 3 versions of the ob-

fuscated datasets as well as the unobfuscated dataset. We also compared

performance of all kinds of strings over these datasets. The results are pre-

sented in table 5.3.

Table 5.3: Performance comparison of different types of strings over the
datasets obfuscated with different tools

Obfuscation
Type

String Type Accuracy Macro
Average
Preci-
sion

Macro
Av-
erage
Recall

Macro
Av-
erage
F1

Average
Training
Time
(Sec-
onds)

No
obfuscation

All 70.68% 64.31% 69.70% 64.79% 14.38
DEX 70.57% 63.91% 69.30% 64.36% 14.26
Unreferenced 69.68% 64.58% 69.07% 64.37% 4.95
Application 62.20% 54.00% 57.96% 53.46% 0.02

ProGuard

All 76.96% 72.19% 75.78% 72.07% 3.68
DEX 76.91% 71.87% 76.00% 71.94% 3.65
Unreferenced 65.52% 59.15% 63.78% 59.19% 1.03
Application 62.20% 54.00% 57.96% 53.46% 0.02

Allatori

All 70.00% 62.77% 68.93% 63.76% 12.97
DEX 69.23% 61.86% 67.93% 62.69% 13.02
Unreferenced 66.15% 59.61% 65.11% 59.84% 4.42
Application 62.20% 54.00% 57.96% 53.46% 0.02

DashO

All 67.44% 59.96% 65.48% 60.30% 14.68
DEX 67.42% 59.73% 65.15% 59.90% 14.66
Unreferenced 64.26% 55.68% 62.63% 56.46% 5.08
Application 62.20% 54.00% 57.96% 53.46% 0.02

As shown in the table, without any kind of obfuscation, our system is able to
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predict the author of an Android binary with an accuracy of almost 71% for

All and DEX strings, 70% for unreferenced strings and 62% for Application

strings. The experiments performed until now highlighted the correlation

between the size of the dataset and system performance. From the given

dataset of only 96 APKs, the system was able to extract around 1.4 million

all strings (this number was around 36 million for the benign dataset and

5.4 million for the malware dataset). Whereas, in the case of unreferenced

strings, this number dropped to 400k, and for application strings it was only

2689 strings. The smaller number of strings is a likely reason why the system

was not able achieve accuracy as high as the benign or malware application

datasets. Another factor we must consider is that all the source code An-

droid projects are downloaded from the GitHub repository, which is an open

source collaborative platform. Even with all the verifications checks and pre-

cautions (discussed in the section 4.1.3), there is a possibility that a program

is written by multiple authors or contains code components directly copied

from some other source. We also ignored many of the source code projects

for several reasons such as compilation errors, incomplete code and missing

library files. Such excluded projects might contain important information

about an author's writing style but were not considered in our analysis. All

these factors could have led to the generation of noisy author profiles. Yet,

the results are quite promising, and the system was able to predict authors

with an accuracy of 71%.

In the case of the obfuscated dataset experiments, except for the application
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strings, the system performance degrades slightly in the case of Allatori and

moderately in the case of the DashO obfuscation tool. Obfuscation changes

the names of various string components such as classes, methods, and fields

to random strings. Along with the obfuscation, Allatori and DashO both

have the provision of string encryption. Encryption encodes a given string

to produce a new unreadable string. In both cases, the original string is con-

verted to a random string. Such random strings are not informative for the

authorship task and can produce noisy author profiles. Nevertheless, system

performance is not affected significantly for the Allatori and Dasho obfus-

cated datasets, even after obfuscation and encryption of string components.

The performance of the ProGuard obfuscation tool is quite interesting. In

the case of unreferenced strings, the system performance is affected slightly

as compared to the unobfuscated dataset. This is not surprising as ProGuard

obfuscates various string components and this affects the classification perfor-

mance. However, in the case of All and DEX strings, the ProGuard dataset

results are better than for the unobfuscated dataset. The way in which the

ProGuard obfuscation operates may be the reason of such an unusual perfor-

mance. With the default obfuscation settings, ProGuard extensively removes

various unused code components such as debug information and unused code.

This is reflected in the number of strings available for analysis in the Pro-

Guard obfuscated dataset. For example, the number of All or DEX strings

extracted in the case of all other datasets except ProGuard (unobfuscated,

Allatori, and DashO) is around 1.4 million. In the case of the ProGuard ob-
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fuscated dataset, this number reduced drastically to only 377k strings. This

might have led to removal of noisy data from the samples, and therefore

focusing on only relevant features representing an author's style. Unlike un-

referenced strings which mostly contain only user-defined code components,

All and DEX strings contain library and third party classes as well. Hence,

removal of redundant information could have eliminated strings that are not

very informative for authorship analysis. Also, the size of the datasets is

rather small and thus a few different classification predictions can influence

accuracy.

As none of the obfuscation tools used for our analysis obfuscate application

strings, the system has the same performance for this type of strings over all

of the obfuscated and the unobfuscated datasets.

To study the performance of the system over the obfuscated datasets with

varied levels of APK similarity, APKs having higher similarity score than

the given similarity threshold must be removed from the dataset. Thus, the

number of APKs in the dataset is reduced with the similarity threshold lev-

els. As the number of APKs is already relatively small (96 APKs only), this

would lead to a very small dataset, and the results over such a small dataset

would not be very informative. Hence, we did not include this analysis in

our thesis.
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5.5 Discussion

Our proposed Android authorship attribution system is quite promising in

many respects. Our results showed that we can predict the author of an un-

known binary just by analysing string components at the binary level. The

system proved to be very efficient as it can handle many android samples

with a relatively low classification training time. Even though All and DEX

strings perform better than unreferenced and application strings, both unref-

erenced and application strings can effectively identify the author of an APK

with even lower training time. Our system works efficiently on any kind of

dataset including benign, malicious and obfuscated applications. We should

also note that the size of the dataset plays a crucial role in the attribution

task. With a larger number of training samples, the system can generate

stronger author profiles and can perform even better.

In order to mislead our proposed authorship attribution system, malware

authors can disguise their identity by employing methods such as renaming

the strings to some random variables, mimicking the coding style of a legiti-

mate author or addition of redundant code components. However, an APK

contains a number of strings that can reveal the identity of an author. For

example, in the case of the benign dataset, our system analysed around 23

thousand strings per APK. Altering each of these strings will a challenging

task. Thus, techniques used for hiding the author identity will require a con-

siderable amount of time and efforts. We should also acknowledge the fact
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that malware authors can use different developer certificates to sign their

malware applications. As we have used the certificates to group the applica-

tions generated by a particular author, in such cases, our system can end up

generating multiple profiles for a single author. However, such cases are out

of the scope of our analysis.
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Chapter 6

Conclusion

In this chapter, we discuss the contributions made by this thesis followed by

the discussion of future work in this field.

6.1 Summary of contributions

In this thesis, we presented a lightweight, efficient system to identify the au-

thor of an Android binary by leveraging string components present in the

application. The system generates author profiles by extracting word level

n-grams from the strings. These profiles are then used to identify the au-

thor of an unseen Android binary. To the best of our knowledge, this is the

first attempt to design an Android authorship attribution system leveraging

string data within APKs.

The number of malware samples targeting the Android platform is increas-
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ing rapidly [32]. Thus, an automated system that can effectively detect such

malware samples is needed. Our thesis proposed a solution to detect such

Android malware samples. As our system generates profiles of Android au-

thors to predict the author of an unknown application, Android applications

attributed to malware author profiles by our system can be flagged as ma-

licious. Our results demonstrated that our system can effectively attribute

benign as well as malware Android applications.

Besides our main contribution of developing the attribution system to iden-

tity benign as well as malware authors, we compared the performance of

different kinds of string components such as all, DEX, unreferenced and ap-

plication strings for the task of Android authorship attribution. In terms of

system accuracy, All and DEX strings outperform unreferenced and appli-

cation strings. However, unreferenced and application strings substantially

reduce the overall time required for training the system, while maintaining

fairly good accuracy.

We tested the Android authorship attribution system over obfuscated appli-

cations. We studied the effect of obfuscation tools such as ProGuard, Allatori

and Dasho on our proposed system. The system performed quite well even

in the presence of obfuscation.

We demonstrated the relation between the size of the datasets and the sys-

tem performance. We also presented results over datasets with varied levels

of APK similarity.

Another important contribution of our work is the datasets used for our
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analysis. In the authorship attribution domain, the lack of open bench-

mark datasets is a serious challenge faced by researchers. In our thesis, we

build 3 different datasets to study benign, malware and obfuscated Android

applications and these are the only currently existing datasets for Android

authorship attribution. These datasets will be helpful for further research in

Android authorship attribution.

6.2 Future work

There are many opportunities to extend our research as listed below:

• In this work, we employed a linear SVM classifier. The system perfor-

mance can be evaluated further using a variety of other classifiers such

as multinomial Naive Bayes, k -nearest neighbour and logistic regres-

sion.

• Different feature selection strategies such as chi-square, information

gain and pointwise mutual information can be implemented to select

the highly informative features and to reduce total number of features

used for the analysis. Linear SVM with the One vs rest classification

strategy generates feature coefficients for the classification task. These

coefficients can also be used to select the highest ranked features.

• The string extraction strategy can be improved further by incorporating

different natural language processing techniques such as stemming and
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case folding. Case folding converts all the strings to either lower case or

upper case, whereas stemming reduces strings to their root words. Such

text normalization techniques enable more standard forms of strings to

be available for analysis.

• Attempts should be made to add further Android authors and new

APKs to the current datasets, especially for the malware and obfus-

cated datasets, which currently contain fewer samples than the benign

application dataset. Also, in the case of the obfuscated dataset, the ef-

fect of many other Android obfuscation tools such as DexGuard, JODE

and Jshrink could be studied by generating obfuscated applications us-

ing these tools.

• The current system is designed to solve a closed world problem, i.e.,

an unknown Android application can only be attributed to one of the

authors from a set of known candidate authors. The system currently

employs a supervised classifier for the attribution task. Supervised clas-

sifiers require a labelled training dataset. However, in the real world,

the author of many Android applications is unknown. Thus, unsuper-

vised classification techniques which do not need a labelled training

dataset could be used. Various clustering algorithms such as k-means

algorithm and support vector clustering could be applied to form clus-

ters of Android authors' applications. The system could be enhanced

further by transferring knowledge obtained in the supervised domain to
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the unsupervised domain, i.e., by generating clusters of existing known

authors in the dataset, and then forming clusters of unseen samples

belonging to unseen Android authors.
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